skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced DFT for Fortuitous Detection of Transition Faults During Scan Shift
Transition fault testing is an important component of modern testing for delay defects. Unfortunately, test pattern sets for delay defects tend to be significantly longer than test pattern sets for static defects. In the past, various approaches have been devised to detect static defects during scan shift to reduce test time and increase defect coverage. In this paper, we propose a DFT (Design-For-Test) enhancement to allow delay defects to be detected by stuck-at test patterns during scan shift as well.  more » « less
Award ID(s):
1814928 1812777
PAR ID:
10356398
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE 31st Microelectronics Design & Test Symposium (MDTS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Recent advances in process technology have resulted in novel defect mechanisms making the test generation process very challenging. In addition to complete opens and shorts that can be represented via extreme defect resistance magnitudes, partial resistive opens and shorts are also of concern in deeply scaled CMOS technologies. For open defects with intermediate defect magnitude values, it has been shown that multi-pattern tests are necessary for defect exposure. We extend this approach to short defects with intermediate defect magnitude values to obtain a suite of multi-pattern tests for standard cell instances that cover complete as well as partial intra-cell open and short defects. A hierarchical scan-compatible SAT-based test generation approach for full scan sequential circuits is then proposed that allows such multi-pattern tests to be applied to the circuit via the scan infrastructure. A key innovation is the combined use of shift and capture operations along with launch-on-capture and launch-on- shift scan based test application for increased defect coverage. Resulting defect coverage improvements over conventional two-pattern tests are demonstrated on ISCAS89 benchmark circuits. 
    more » « less
  2. Abstract Test sets that target standard fault models may not always be sufficient for detecting all defects. To evaluate test sets for the detection of unmodeled defects,n-detect test sets (which detect all modeled faults at leastntimes) have previously been proposed. Unfortunately,n-detect test sets are often prohibitively long. In this paper, we investigate the ability of shadow flip-flops connected into a MISR (Multiple Input Signature Register) to detect stuck-at faults fortuitously multiple times during scan shift. We explore which flip-flops should be shadowed to increase the value ofnfor the least detected stuck-at faults for each circuit studied. We then identify which circuit characteristics are most important for determining the cost of the MISR needed to achieve high values ofn. For example, circuits that contain a few flip-flops with upstream fault cones that cover a large percentage of all faults in the circuit can often achieve highn-detect coverage fortuitously with a low-cost MISR. This allows a DFT engineer to predict the viability of this MISR-based approach early in the design cycle. 
    more » « less
  3. Excessive power during in–field testing can cause multiple issues, including invalidation of the test results, overheating, and damage to the circuit. In this paper, we evaluate the reduction of capture power when specific segments of a scan chain can be kept from capturing data subject to values stored in a control register. The proposed approach requires no changes to the Automatic Test Pattern Generation (ATPG), no redesign of the circuitry to match a particular test set, and no additional patterns to maintain fault coverage. We will show that our approach can achieve very high capture power reduction— approaching 100% for multiple patterns. 
    more » « less
  4. Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied. 
    more » « less
  5. null (Ed.)
    Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied. 
    more » « less