skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tectonic, hydrogeologic, and climatic controls on Late Holocene dune formation, China Lake basin, Indian Wells Valley, California, USA
Abstract Analysis of patterns of faulting and hydrogeology, stratigraphic and sedimentologic studies, and luminescence dating of aeolian deposits in China Lake basin provide new perspectives on the origins and development of Late Holocene dunes and sand ramps in the seismically active Indian Wells Valley of eastern California. Aeolian dune and sand sheet deposits were sourced from alluvial material derived from granitic rocks of the south-eastern Sierra Nevada and are concentrated in areas with sand-stabilizing phreatophyte vegetation influenced by high groundwater levels along the active oblique-normal Little Lake and Paxton Ranch faults, which locally form barriers to groundwater flow. Three episodes of sand accumulation are recognized (2.1 ± 0.1 to 2.0 ± 0.1 ka, 1.8 ± 0.2 to 1.6 ± 0.2 ka, and 1.2 ± 0.1 to 0.9 ± 0.1 ka) during conditions in which sediment supplied to the basin during periods of enhanced rainfall and runoff was subsequently reworked by wind into dunes and sand ramps at the transition to more arid periods. Understanding the role tectonics plays in influencing the hydrogeology of seismically active lake basins provides insights to accurately interpret landscape evolution and any inferences made on past hydroclimate variability in a region.  more » « less
Award ID(s):
1735891
PAR ID:
10356422
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Quaternary Research
Volume:
106
ISSN:
0033-5894
Page Range / eLocation ID:
11 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Late Pleistocene and Early Holocene aeolian deposits in Tasmania are extensive in the present subhumid climate zone but also occur in areas receiving >1000 mm of rain annually. Thermoluminescence, optically stimulated luminescence, and radiocarbon ages indicate that most of the deposits formed during periods of cold climate. Some dunes are remnants of longitudinal desert dunes sourced from now-inundated continental shelves which were previously semi-arid. Others formed near source, often in the form of lunettes east of seasonally-dry lagoons in the previously semi-arid Midlands and southeast of Tasmania, or as accumulations close to floodplains of major rivers, or as sandsheets in exposed areas. Burning of vegetation by the Aboriginal population after 40 ka is likely to have influenced sediment supply. A key site for determining climate variability in southern Tasmania is Maynes Junction which records three periods of aeolian deposition (at ca. 90, 32 and 20 ka), interspersed with periods of hillslope instability. Whether wind speeds were higher than at present during the last glacial period is uncertain, but shells in the Mary Ann Bay sandsheet near Hobart and particle size analysis of the Ainslie dunes in northeast Tasmania suggest stronger winds during the last glacial period than at present. 
    more » « less
  2. Contradictory interpretations of upper Pleistocene (120–40 ka) sedimentary deposits along the US Mid-Atlantic Coast have hindered the development of a reliable regional sea-level curve for the last glacial cycle. This study presents new and compiled sediment cores, ground-penetrating radar, topographic data, aerial imagery, and limited geochronology from geologic units emplaced along the ocean-facing side of the Virginia Eastern Shore during mid- and late-Pleistocene periods of higher-than-present relative sea level: the Accomack Member (Omar Formation), the Butlers Bluff Member (Nassawadox Formation), the Joynes Neck Sand, and the Wachapreague Formation. Minor lithologic and morphologic updates are presented for the MIS 5e/5c Butlers Bluff Member, which is interpreted as a southward-prograding spit emplaced atop penecontemporaneous shoreface sediments or older transgressive sediments which fill the Exmore Paleochannel. The Joynes Neck Sand is reinterpreted as a coastal lag deposit, correlated with the Ironshire Formation in Maryland and Delaware, likely emplaced during MIS 5c. The Wachapreague Formation is determined to be a composite unit composed of two newly mapped members—the Locustville and Upshur Neck—which differ in lithology, internal architecture, and surficial morphology. The older and western Locustville Member (MIS 5a) is characterized by progradational beach and foredune ridges built atop transgressive shoreface and backbarrier deposits, and is correlated with the Sinepuxent Formation in Maryland and Delaware. The younger and eastern Upshur Neck Member of the Wachapreague Formation (late MIS 5a) is distinguished by surficial recurved ridges and preserved washover, dune, and channel-fill structures associated with spit growth atop shoreface deposits. These findings indicate that the Wachapreague Formation was constructed during two sequential highstands: an initial phase of sea-level rise and then fall allowed for deposition of the Locustville Member as a transgressive-highstand-regressive barrier system; and, following a period of lower-than-present sea level, a later highstand resulted in partial erosion of the easternmost Locustville and growth of the Upshur Neck Member. Finally, we update earlier descriptions of an aeolian sand sheet, likely deposited during MIS 3c, that discontinuously overlies most of the east-central Virginia Eastern Shore. Together, these findings update interpretations of the depositional history of the southern Delmarva Peninsula, and allow for future refinement of the sea-level history of the last interglacial-to-glacial period along the mid-field US Mid-Atlantic coast. 
    more » « less
  3. Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle. 
    more » « less
  4. Abstract Wherever a loose bed of sand is subject to sufficiently strong winds, aeolian dunes form at predictable wavelengths and growth rates. As dunes mature and coarsen, however, their growth trajectories become more idiosyncratic; nonlinear effects, sediment supply, wind variability and geologic constraints become increasingly relevant, resulting in complex and history-dependent dune amalgamations. Here we examine a fundamental question: do aeolian dunes stop growing and, if so, what determines their ultimate size? Earth’s major sand seas are populated by giant sand dunes, evolved over tens of thousands of years. We perform a global analysis of the topography of these giant dunes, and their associated atmospheric forcings and geologic constraints, and we perform numerical experiments to gain insight on temporal evolution of dune growth. We find no evidence of a previously proposed limit to dune size by atmospheric boundary layer height. Rather, our findings indicate that dunes may grow indefinitely in principle; but growth depends on morphology, slows with increasing size, and may ultimately be limited by sand supply. 
    more » « less
  5. Abstract Aeolian dune fields are self‐organized patterns formed by wind‐blown sand. Dunes are topographic roughness elements that impose drag on the atmospheric boundary layer (ABL), creating a natural coupling between form and flow. While the steady‐state influence of drag on the ABL is well studied, nonequilibrium effects due to roughness transitions are less understood. Here we examine the large‐scale coupling between the ABL and an entire dune field. Field observations at White Sands, New Mexico, reveal a concomitant decline in wind speed and sand flux downwind of the transition from smooth playa to rough dunes at the upwind dune‐field margin, that affects the entire∼10‐km ‐long dune field. Using a theory for the system that accounts for the observations, we generalize to other roughness scenarios. We find that, via transitional ABL dynamics, aeolian sediment aggradation can be influenced by roughness both inside and outside dune fields. 
    more » « less