This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities onmore »
Addressing Convergent Problems with Entrepreneurially-Minded Learning
In this paper we explore the ability of educational frameworks focused on developing the entrepreneurial mindset to be used to develop students’ abilities to approach convergent problems. While there is not a single widely accepted definition of convergence, there are some general aspects noted by the NSF including: socially relevant, multidisciplinary, complex, and not being adequately addressed by current methods and practices. Convergent problems require existing disciplines to collaborate to create new knowledge, skills, and approaches in order to be appropriately addressed. We believe that there are aspects of the entrepreneurial mindset and the learning of it that can support the development of knowledge, skills, and attitudes to approach convergent problems. This is relevant because most work on convergent problems happens at the graduate level and beyond and our interest is to create experiences for undergraduates that prepare them to embark on this work after graduation.
This study maps entrepreneurial mindset learning (EML) onto a framework based on prior work on convergence to identify the aspects of EML that directly support convergence work or preparation for convergence work. The existing dataset of KEEN cards is used as a proxy for existing work in this space, as well.
If existing work more »
- Award ID(s):
- 2022271
- Publication Date:
- NSF-PAR ID:
- 10356566
- Journal Name:
- American Society for Engineering Education
- Page Range or eLocation-ID:
- #37806
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Teaming is a core part of engineering education, especially in the first and last years of engineering when project work is a prevalent focus. The literature on the effects of working in diverse teams is mixed. Negative findings include decreased affect, increased frustration, and sustained conflict in teams. Positive findings include increased productivity, production of high quality products, and divergent-thinking and idea generation. Given these mixed findings, it becomes important to not only understand the practical outputs of working in diverse teams, but also how the experience of working in diverse teams influences whether students see themselves as engineers and whether or not they feel they belong in engineering. Our project, Building Supports for Diversity through Engineering Teams, investigates how students’ attitudes towards diversity influence how students experience work in diverse teams through addressing two main research questions: 1) What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? 2) How do students’ perceptions of diversity, affect, and engineering practices change because of working on diverse teams? Using a multi-method approach, we deployed survey instruments to determine changes in student’s attitudes about teaming, diversity sensitivity, and openness attitudes. We alsomore »
-
This paper presents the initial work of a recently funded NSF project on ethical and responsible research and practices in science and engineering. The objective of this research is to improve instructor training, interventions, and student outcomes in high schools and universities to improve awareness and commitment to ethical practices in STEM coursework. The project will generate a robust snapshot of the ethical knowledge, reasoning skills, attitudes, and practices of several thousand undergraduate engineering students. This snapshot will inform the development of a three-week enrichment opportunity for high school STEM teachers. Working with university faculty and graduate students, these teachers will develop learning modules on ethical issues related to their courses. The snapshot will also identify gaps and guide the creation of targeted interventions that will be used in second-, third-, and fourth-year engineering courses. This data-driven project uses a mixed-methods approach to generate a better understanding of the impact of ethics interventions at various points in a student's academic development by developing and using a set of instruments to measure cognitive, affective, and behavioral aspects of ethical competency and self-efficacy. To that end, a second snapshot will be taken by testing and surveying engineering students in their capstone coursesmore »
-
Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »
-
As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, providemore »