skip to main content


Title: Forest and Freshwater Ecosystem Responses to Climate Change and Variability at US LTER Sites
Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems.  more » « less
Award ID(s):
2020397 2020443 1637685 2025755 1855277 1637686 1832210 2025982 1636476 1907683
NSF-PAR ID:
10356621
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
9
ISSN:
0006-3568
Page Range / eLocation ID:
851 to 870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecosystems across the United States are changing in complex and unpredictable ways and analysis of these changes requires coordinated, long‐term research. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of “populations and communities.” This analysis revealed that each LTER site had at least one compelling “story” about what their site would look like in 50–100 yr. As the stories were prepared, themes emerged, and the stories were group into papers along five themes: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the cascading effects theme and includes stories from the Bonanza Creek (boreal), Kellogg Biological Station (agricultural and freshwater), Palmer (Antarctica), and Harvard Forest (temperate forest) LTER sites. We define cascading effects very broadly to include a wide array of unforeseen chains of events that result from a variety of actions or changes in a system. While climate change is having important direct effects on boreal forests, indirect effects mediated by fire activity—severity, size, and return interval—have large cascading effects over the long term. In northeastern temperate forests, legacies of human management and disturbance affect the composition of current forests, which creates a cascade of effects that interact with the climate‐facilitated invasion of an exotic pest. In Antarctica, declining sea ice creates a cascade of effects including declines in Adèlie and increases in Gentoo penguins, changes in phytoplankton, and consequent changes in zooplankton populations. An invasion of an exotic species of lady beetle is likely to have important future effects on pest control and conservation of native species in agricultural landscapes. New studies of zebra mussels, a well‐studied invader, have established links between climate, the heat tolerance of the mussels, and harmful algal blooms. Collectively, these stories highlight the need for long‐term studies to sort out the complexities of different types of ecological cascades. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about trophic interactions as an important driver of ecosystem structure, function, services, and futures.

     
    more » « less
  2. Abstract

    Understanding the complex and unpredictable ways ecosystems are changing and predicting the state of ecosystems and the services they will provide in the future requires coordinated, long‐term research. This paper is a product of a U.S. National Science Foundation funded Long Term Ecological Research (LTER) network synthesis effort that addressed anticipated changes in future populations and communities. Each LTER site described what their site would look like in 50 or 100 yr based on long‐term patterns and responses to global change drivers in each ecosystem. Common themes emerged and predictions were grouped into state change, connectivity, resilience, time lags, and cascading effects. Here, we report on the “state change” theme, which includes examples from the Georgia Coastal (coastal marsh), Konza Prairie (mesic grassland), Luquillo (tropical forest), Sevilleta (arid grassland), and Virginia Coastal (coastal grassland) sites. Ecological thresholds (the point at which small changes in an environmental driver can produce an abrupt and persistent state change in an ecosystem quality, property, or phenomenon) were most commonly predicted. For example, in coastal ecosystems, sea‐level rise and climate change could convert salt marsh to mangroves and coastal barrier dunes to shrub thicket. Reduced fire frequency has converted grassland to shrubland in mesic prairie, whereas overgrazing combined with drought drive shrub encroachment in arid grasslands. Lastly, tropical cloud forests are susceptible to climate‐induced changes in cloud base altitude leading to shifts in species distributions. Overall, these examples reveal that state change is a likely outcome of global environmental change across a diverse range of ecosystems and highlight the need for long‐term studies to sort out the causes and consequences of state change. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about state changes as an important driver of ecosystem structure, function, services, and futures.

     
    more » « less
  3. Abstract

    Long‐term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land‐use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long‐term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid‐western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N‐saturation, and acid deposition. Hydro‐climatologic and water quality datasets from long‐term measurements and data from short‐duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long‐term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.

     
    more » « less
  4. Abstract

    Ecosystems are changing in complex and unpredictable ways, and analysis of these changes is facilitated by coordinated, long‐term research. Meeting diverse societal needs requires an understanding of what populations and communities will be dominant in 20, 50, and 100 yr. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of populations and communities. This analysis revealed that each LTER site had at least one compelling story about what their site would look like in 50 or 100 yr. As the stories were prepared, themes emerged, and the stories were grouped into papers along five themes for this special issue: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the resilience theme and includes stories from the Baltimore (urban), Hubbard Brook (northern hardwood forest), Andrews (temperate rain forest), Moorea (coral reef), Cedar Creek (grassland), and North Temperate Lakes (lakes) sites. The concept of resilience (the capacity of a system to maintain structure and processes in the face of disturbance) is an old topic that has seen a resurgence of interest as the nature and extent of global environmental change have intensified. The stories we present here show the power of long‐term manipulation experiments (Cedar Creek), the value of long‐term monitoring of forests in both natural (Andrews, Hubbard Brook) and urban settings (Baltimore), and insights that can be gained from modeling and/or experimental approaches paired with long‐term observations (North Temperate Lakes, Moorea). Three main conclusions emerge from the analysis: (1) Resilience research has matured over the past 40 yr of the LTER program; (2) there are many examples of high resilience among the ecosystems in the LTER network; (3) there are also many warning signs of declining resilience of the ecosystems we study. These stories highlight the need for long‐term studies to address this complex topic and show how the diversity of sites within the LTER network facilitates the emergence of overarching concepts about this important driver of ecosystem structure, function, services, and futures.

     
    more » « less
  5. Abstract

    Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long‐term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundation’s Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about “what their site would look like” in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long‐term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems.

     
    more » « less