Recent lattice QCD results, comparing to a hadron resonance gas model, have shown the need for hundreds of particles in hadronic models. These extra particles influence both the equation of state and hadronic interactions within hadron transport models. Here, we introduce the PDG21+ particle list, which contains the most up-to-date database of particles and their properties. We then convert all particles decays into 2 body decays so that they are compatible with SMASH in order to produce a more consistent description of a heavy-ion collision.
more »
« less
Influence of heavy resonances in SMASH
Recent lattice QCD results, comparing to a hadron resonance gas model, have shown the need for hundreds of particles in hadronic models. These extra particles influence both the equation of state and hadronic interactions within hadron transport models. Here, we introduce the PDG21+ particle list, which contains the most up-to-date database of particles and their properties. We then convert all particles decays into 2 body decays so that they are compatible with SMASH in order to produce a more consistent description of a heavy-ion collision.
more »
« less
- Award ID(s):
- 2103680
- PAR ID:
- 10356625
- Date Published:
- Journal Name:
- Proceedings for the 37th Winter Workshop on Nuclear Dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)The proper treatment of hadronic resonances plays an important role for many aspects of heavy ion collisions. We expect this to be the case also for hadronization, due to the large degeneracies of excited states, and the abundant production of hadrons from their decays. We show how a comprehensive treatment of excited meson states can be incorporated into quark recombination, and in extension, into Hybrid Hadronization. We discuss in detail the quantum mechanics of forming excited states, utilizing the Wigner distribution functions of angular momentum eigenstates of isotropic 3-D harmonic oscillators. We describe how resonance decays can be handled, based on a set of minimal assumptions, by creating an extension of hadron decays in PYTHIA 8. Finally, we present a study of hadron production by jets using PYTHIA and Hybrid Hadronization with excited mesons up to orbital angular momentumL= 4. We find that states up toL= 2 are produced profusely by quark recombination.more » « less
-
This manuscript is devoted to the overview of the most recent measurements of non-leptonic hadron decays at the LHC, including results from the ATLAS, CMS, and LHCb collaborations. The non-leptonic hadron decays cover a very rich sample of the physics phenomena that form the foundation of the Standard Model of particle physics and could show effects from new particles that are not included in the Standard Model predictions. There exist multiple physics analyses of non-leptonic hadron decays, focusing on various aspects of these decays. Some of them focus on the search for rare decays that are constrained by theoretical predictions; others provide newprecise measurements of known channels. Altogether, these measurements improve existing theories and bring us deeper understanding of these processes.more » « less
-
David, G.; Garg, P.; Kalweit, A.; Mukherjee, S.; Ullrich, T.; Xu, Z.; Yoo, I.-K. (Ed.)We investigate the chemical freeze-out in heavy-ion collisions (HICs) and the impact of the hadronic spectrum on thermal model analyses [1, 2]. Detailed knowledge of the hadronic spectrum is still an open question, which has phenomenological consequences on the study of HICs. By varying the number of resonances included in Hadron Resonance Gas (HRG) Model calculations, we can shed light on which particles may be produced. Furthermore, we study the influence of the number of states on the so-called two flavor freezeout scenario, in which strange and light particles can freeze-out separately. We consider results for the chemical freeze-out parameters obtained from thermal model fits and from calculating net-particle fluctuations. We will show the effect of using one global temperature to fit all particles and alternatively, allowing particles with and without strange quarks to freeze-out separately.more » « less
-
null (Ed.)A bstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep → τX , within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ - e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp → eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ → eγ , τ → eℓ + ℓ − , and crucially the hadronic modes τ → eY with Y ∈ π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the τ tagger in hadronic channels, an exploration of background suppression through tagging b and c jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.more » « less
An official website of the United States government

