skip to main content


Title: The mechanism for acetate formation in electrochemical CO (2) reduction on Cu: selectivity with potential, pH, and nanostructuring
Nanostructured Cu catalysts have increased the selectivities and geometric activities for high value C–C coupled (C 2 ) products (ethylene, ethanol, and acetate) in the electrochemical CO (2) reduction reaction (CO (2) RR). The selectivity among the high-value C 2 products is also altered, where for instance the yield of acetate increases with alkalinity and is dependent on the catalyst morphology. The reaction mechanisms behind the selectivity towards acetate vs. other C 2 products remain controversial. In this work, we elucidate the reaction mechanism for acetate formation by using ab initio simulations, a coupled kinetic-transport model, and loading dependent experiments. We find that trends in acetate selectivity can be rationalized from variations in electrolyte pH and the local mass transport properties of the catalyst and not from changes in Cu's intrinsic activity. The selectivity mechanism originates from the transport of ketene, a stable (closed shell) intermediate, away from the catalyst surface into solution where it reacts to form acetate. While this type of mechanism has not yet been discussed in the CO (2) RR, variants of it may explain similar selectivity fluctuations observed for other stable intermediates like CO and acetaldehyde. Our proposed mechanism suggests that acetate selectivity increases with increasing pH, decreasing catalyst roughness and significantly varies with the applied potential.  more » « less
Award ID(s):
1904966
NSF-PAR ID:
10356836
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
15
Issue:
9
ISSN:
1754-5692
Page Range / eLocation ID:
3978 to 3990
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by −86±2 mV/pH during CO2RR, which can be used to directly quantify the change in the local pH near the catalyst surface during electrolysis. We then applied this methodology to investigate the role of cations in affecting the local pH during CO2RR and find that during CO2RR to CO on Au in an MHCO3buffer (where M is an alkali metal), the experimentally measured local basicity decreased in the order Li+> Na+> K+> Cs+, which agreed with an earlier theoretical prediction by Singh et al. Our results also reveal that the formation of CO is independent of the cation. In summary, RRDE is a versatile tool for detecting local pH change over a diverse range of CO2RR catalysts. Additionally, using the product itself (i.e. CO) as the local pH probe allows us to investigate CO2RR without the interference of additional probe molecules introduced to the system. Most importantly, considering that most CO2RR products have pH‐dependent oxidation, RRDE can be a powerful tool for determining the local pH and correlating the local pH to reaction selectivity.

     
    more » « less
  2. Abstract

    We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by −86±2 mV/pH during CO2RR, which can be used to directly quantify the change in the local pH near the catalyst surface during electrolysis. We then applied this methodology to investigate the role of cations in affecting the local pH during CO2RR and find that during CO2RR to CO on Au in an MHCO3buffer (where M is an alkali metal), the experimentally measured local basicity decreased in the order Li+> Na+> K+> Cs+, which agreed with an earlier theoretical prediction by Singh et al. Our results also reveal that the formation of CO is independent of the cation. In summary, RRDE is a versatile tool for detecting local pH change over a diverse range of CO2RR catalysts. Additionally, using the product itself (i.e. CO) as the local pH probe allows us to investigate CO2RR without the interference of additional probe molecules introduced to the system. Most importantly, considering that most CO2RR products have pH‐dependent oxidation, RRDE can be a powerful tool for determining the local pH and correlating the local pH to reaction selectivity.

     
    more » « less
  3. Abstract

    Recent emphasis on carbon dioxide utilization has necessitated the exploration of different catalyst compositions other than copper-based systems that can significantly improve the activity and selectivity towards specific CO2 reduction products at low applied potential. In this study, a binary CoTe has been reported as an efficient electrocatalyst for CO2reduction in aqueous medium under ambient conditions at neutral pH. CoTe showed high Faradaic efficiency and selectivity of 86.83 and 75%, respectively, for acetic acid at very low potential of − 0.25 V vs RHE. More intriguingly, C1 products like formic acid was formed preferentially at slightly higher applied potential achieving high formation rate of 547.24 μmol cm−2 h−1 at − 1.1 V vs RHE. CoTe showed better CO2RR activity when compared with Co3O4, which can be attributed to the enhanced electrochemical activity of the catalytically active transition metal center as well as improved intermediate adsorption on the catalyst surface. While reduced anion electronegativity and improved lattice covalency in tellurides enhance the electrochemical activity of Co, high d-electron density improves the intermediate CO adsorption on the catalyst site leading to CO2reduction at lower applied potential and high selectivity for C2products. CoTe also shows stable CO2RR catalytic activity for 50 h and low Tafel slope (50.3 mV dec–1) indicating faster reaction kinetics and robust functionality. Selective formation of value-added C2products with low energy expense can make these catalysts potentially viable for integration with other CO2capture technologies thereby, helping to close the carbon loop.

     
    more » « less
  4. null (Ed.)
    Electrochemical CO 2 or CO reduction to high-value C 2+ liquid fuels is desirable, but its practical application is challenged by impurities from cogenerated liquid products and solutes in liquid electrolytes, which necessitates cost- and energy-intensive downstream separation processes. By coupling rational designs in a Cu catalyst and porous solid electrolyte (PSE) reactor, here we demonstrate a direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction. With optimized edge-to-surface ratio, the Cu nanocube catalyst presents an unprecedented acetate performance in neutral pH with other liquid products greatly suppressed, delivering a maximal acetate Faradaic efficiency of 43%, partial current of 200 mA⋅cm −2 , ultrahigh relative purity of up to 98 wt%, and excellent stability of over 150 h continuous operation. Density functional theory simulations reveal the role of stepped sites along the cube edge in promoting the acetate pathway. Additionally, a PSE layer, other than a conventional liquid electrolyte, was designed to separate cathode and anode for efficient ion conductions, while not introducing any impurity ions into generated liquid fuels. Pure acetic acid solutions, with concentrations up to 2 wt% (0.33 M), can be continuously produced by employing the acetate-selective Cu catalyst in our PSE reactor. 
    more » « less
  5. Abstract

    Copper (Cu) remains the most important metal catalyst for the carbon dioxide reduction reaction (CO2RR) into C2products. Due to limited evidence from in situ experiments, mechanistic studies are often performed in the framework of density functional theory (DFT), using functionals at the generalized gradient approximation (GGA) level, which have fundamental difficulties to correctly describe CO adsorption and surface stability. We employ the adiabatic connection fluctuation dissipation theorem within the random phase approximation (RPA), in combination with the linearized Poisson–Boltzmann equation to describe solvation effects, to investigate the mechanism of CO2RR on the Cu(100) facet. Qualitatively different from the DFT‐GGA results, RPA results propose the formation of *OCCHO as the potential determining step towards C2products. The results suggest that it is important to use more accurate methods like RPA when modeling reactions involving multiple CO‐related species like CO2RR.

     
    more » « less