skip to main content


Title: Using Health Concept Surveying to Elicit Usable Evidence: Case Studies of a Novel Evaluation Methodology
Background Developers, designers, and researchers use rapid prototyping methods to project the adoption and acceptability of their health intervention technology (HIT) before the technology becomes mature enough to be deployed. Although these methods are useful for gathering feedback that advances the development of HITs, they rarely provide usable evidence that can contribute to our broader understanding of HITs. Objective In this research, we aim to develop and demonstrate a variation of vignette testing that supports developers and designers in evaluating early-stage HIT designs while generating usable evidence for the broader research community. Methods We proposed a method called health concept surveying for untangling the causal relationships that people develop around conceptual HITs. In health concept surveying, investigators gather reactions to design concepts through a scenario-based survey instrument. As the investigator manipulates characteristics related to their HIT, the survey instrument also measures proximal cognitive factors according to a health behavior change model to project how HIT design decisions may affect the adoption and acceptability of an HIT. Responses to the survey instrument were analyzed using path analysis to untangle the causal effects of these factors on the outcome variables. Results We demonstrated health concept surveying in 3 case studies of sensor-based health-screening apps. Our first study (N=54) showed that a wait time incentive could influence more people to go see a dermatologist after a positive test for skin cancer. Our second study (N=54), evaluating a similar application design, showed that although visual explanations of algorithmic decisions could increase participant trust in negative test results, the trust would not have been enough to affect people’s decision-making. Our third study (N=263) showed that people might prioritize test specificity or sensitivity depending on the nature of the medical condition. Conclusions Beyond the findings from our 3 case studies, our research uses the framing of the Health Belief Model to elicit and understand the intrinsic and extrinsic factors that may affect the adoption and acceptability of an HIT without having to build a working prototype. We have made our survey instrument publicly available so that others can leverage it for their own investigations.  more » « less
Award ID(s):
1813675
NSF-PAR ID:
10357271
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
JMIR Human Factors
Volume:
9
Issue:
1
ISSN:
2292-9495
Page Range / eLocation ID:
e30474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: 100 words Jurors are increasingly exposed to scientific information in the courtroom. To determine whether providing jurors with gist information would assist in their ability to make well-informed decisions, the present experiment utilized a Fuzzy Trace Theory-inspired intervention and tested it against traditional legal safeguards (i.e., judge instructions) by varying the scientific quality of the evidence. The results indicate that jurors who viewed high quality evidence rated the scientific evidence significantly higher than those who viewed low quality evidence, but were unable to moderate the credibility of the expert witness and apply damages appropriately resulting in poor calibration. Summary: <1000 words Jurors and juries are increasingly exposed to scientific information in the courtroom and it remains unclear when they will base their decisions on a reasonable understanding of the relevant scientific information. Without such knowledge, the ability of jurors and juries to make well-informed decisions may be at risk, increasing chances of unjust outcomes (e.g., false convictions in criminal cases). Therefore, there is a critical need to understand conditions that affect jurors’ and juries’ sensitivity to the qualities of scientific information and to identify safeguards that can assist with scientific calibration in the courtroom. The current project addresses these issues with an ecologically valid experimental paradigm, making it possible to assess causal effects of evidence quality and safeguards as well as the role of a host of individual difference variables that may affect perceptions of testimony by scientific experts as well as liability in a civil case. Our main goal was to develop a simple, theoretically grounded tool to enable triers of fact (individual jurors) with a range of scientific reasoning abilities to appropriately weigh scientific evidence in court. We did so by testing a Fuzzy Trace Theory-inspired intervention in court, and testing it against traditional legal safeguards. Appropriate use of scientific evidence reflects good calibration – which we define as being influenced more by strong scientific information than by weak scientific information. Inappropriate use reflects poor calibration – defined as relative insensitivity to the strength of scientific information. Fuzzy Trace Theory (Reyna & Brainerd, 1995) predicts that techniques for improving calibration can come from presentation of easy-to-interpret, bottom-line “gist” of the information. Our central hypothesis was that laypeople’s appropriate use of scientific information would be moderated both by external situational conditions (e.g., quality of the scientific information itself, a decision aid designed to convey clearly the “gist” of the information) and individual differences among people (e.g., scientific reasoning skills, cognitive reflection tendencies, numeracy, need for cognition, attitudes toward and trust in science). Identifying factors that promote jurors’ appropriate understanding of and reliance on scientific information will contribute to general theories of reasoning based on scientific evidence, while also providing an evidence-based framework for improving the courts’ use of scientific information. All hypotheses were preregistered on the Open Science Framework. Method Participants completed six questionnaires (counterbalanced): Need for Cognition Scale (NCS; 18 items), Cognitive Reflection Test (CRT; 7 items), Abbreviated Numeracy Scale (ABS; 6 items), Scientific Reasoning Scale (SRS; 11 items), Trust in Science (TIS; 29 items), and Attitudes towards Science (ATS; 7 items). Participants then viewed a video depicting a civil trial in which the defendant sought damages from the plaintiff for injuries caused by a fall. The defendant (bar patron) alleged that the plaintiff (bartender) pushed him, causing him to fall and hit his head on the hard floor. Participants were informed at the outset that the defendant was liable; therefore, their task was to determine if the plaintiff should be compensated. Participants were randomly assigned to 1 of 6 experimental conditions: 2 (quality of scientific evidence: high vs. low) x 3 (safeguard to improve calibration: gist information, no-gist information [control], jury instructions). An expert witness (neuroscientist) hired by the court testified regarding the scientific strength of fMRI data (high [90 to 10 signal-to-noise ratio] vs. low [50 to 50 signal-to-noise ratio]) and gist or no-gist information both verbally (i.e., fairly high/about average) and visually (i.e., a graph). After viewing the video, participants were asked if they would like to award damages. If they indicated yes, they were asked to enter a dollar amount. Participants then completed the Positive and Negative Affect Schedule-Modified Short Form (PANAS-MSF; 16 items), expert Witness Credibility Scale (WCS; 20 items), Witness Credibility and Influence on damages for each witness, manipulation check questions, Understanding Scientific Testimony (UST; 10 items), and 3 additional measures were collected, but are beyond the scope of the current investigation. Finally, participants completed demographic questions, including questions about their scientific background and experience. The study was completed via Qualtrics, with participation from students (online vs. in-lab), MTurkers, and non-student community members. After removing those who failed attention check questions, 469 participants remained (243 men, 224 women, 2 did not specify gender) from a variety of racial and ethnic backgrounds (70.2% White, non-Hispanic). Results and Discussion There were three primary outcomes: quality of the scientific evidence, expert credibility (WCS), and damages. During initial analyses, each dependent variable was submitted to a separate 3 Gist Safeguard (safeguard, no safeguard, judge instructions) x 2 Scientific Quality (high, low) Analysis of Variance (ANOVA). Consistent with hypotheses, there was a significant main effect of scientific quality on strength of evidence, F(1, 463)=5.099, p=.024; participants who viewed the high quality evidence rated the scientific evidence significantly higher (M= 7.44) than those who viewed the low quality evidence (M=7.06). There were no significant main effects or interactions for witness credibility, indicating that the expert that provided scientific testimony was seen as equally credible regardless of scientific quality or gist safeguard. Finally, for damages, consistent with hypotheses, there was a marginally significant interaction between Gist Safeguard and Scientific Quality, F(2, 273)=2.916, p=.056. However, post hoc t-tests revealed significantly higher damages were awarded for low (M=11.50) versus high (M=10.51) scientific quality evidence F(1, 273)=3.955, p=.048 in the no gist with judge instructions safeguard condition, which was contrary to hypotheses. The data suggest that the judge instructions alone are reversing the pattern, though nonsignificant, those who received the no gist without judge instructions safeguard awarded higher damages in the high (M=11.34) versus low (M=10.84) scientific quality evidence conditions F(1, 273)=1.059, p=.30. Together, these provide promising initial results indicating that participants were able to effectively differentiate between high and low scientific quality of evidence, though inappropriately utilized the scientific evidence through their inability to discern expert credibility and apply damages, resulting in poor calibration. These results will provide the basis for more sophisticated analyses including higher order interactions with individual differences (e.g., need for cognition) as well as tests of mediation using path analyses. [References omitted but available by request] Learning Objective: Participants will be able to determine whether providing jurors with gist information would assist in their ability to award damages in a civil trial. 
    more » « less
  2. Mukherjee, Amitava (Ed.)

    What influences the adoption of SARS-CoV-2 mitigation behaviors–both personal, such as mask wearing and frequent handwashing, and social, such as avoiding large gatherings and physical contact–across countries? Understanding why some individuals are more willing to change their behavior to mitigate the spread of a pandemic will not only help us to address the current SARS-CoV-2 pandemic but also to respond to future ones. Researchers have pointed to a variety of factors that may influence individual adoption of personal and social mitigation behaviors, including social inequality, risk perception, personality traits, and government policies. While not denying the importance of these factors, we argue that the role of trust and confidence has received insufficient attention to date. Our study explores whether there is a difference in the way trust and confidence in particular leaders and organizations affect individual compliance and whether this effect is consistent across different types of mitigation behaviors. Specifically, we utilize an original cross-national survey conducted during the first wave of the SARS-CoV-2 pandemic (May-June 2020) to investigate how trust in scientists, medical professionals, politicians, and religious leaders and confidence in global, national, and local health organizations affects individual compliance in 16 countries/territories across five world regions. Our analyses, which control for the aforementioned factors as well as several others, suggest that trust in politicians and confidence in national health ministries have the most consistent influence on whether individuals adopt both personal and social mitigation behaviors. Across our sample, we find that greater trust in politicians is associated with lower levels of individual compliance with public health directives, whereas greater confidence in the national health ministry is associated with higher levels of individual compliance. Our findings suggest the need to understand trust and confidence as among the most important individual level characteristics driving compliance when developing and delivering messaging about the adoption of mitigation behaviors. The content of the message, it seems, will be most effective when citizens across countries trust its source. Trusted sources, such as politicians and the national health ministry, should thus consider working closely together when determining and communicating recommended health behaviors to avoid contradicting one another.

     
    more » « less
  3. This dataset lists 289 blacklegged tick population datasets from 6 studies that record abundance. These datasets were found by inputing keywords Ixodes Scapularis and tick in data repositories including Long Term Ecological Research data portal, National Ecological Observatory Network data portal, Google Datasets, Data Dryad, and Data One. The types of tick data recorded from these studies include density (number per square meter for example), proportion of ticks, count of ticks found on people. The locations of the datasets range from New York, New Jersey, Iowa, Massachusetts, and Connecticut, and range from 9 to 24 years in length. These datasets vary in that some record different life stages, geographic scope (county/town/plot), sampling technique (dragging/surveying), and different study length. The impact of these study factors on study results is analyzed in our research.

    Funding:

    RMC is supported by the National Institute of General Medical Sciences of the National Institutes of the Health under Award Number R25GM122672. CAB, JP, and KSW are supported by the Office of Advanced Cyberinfrastructure in the National Science Foundation under Award Number #1838807. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

    {"references": ["Ellison A. 2017. Incidence of Ticks and Tick Bites at Harvard Forest since 2006. Environmental Data Initiative. https://doi.org/10.6073/pasta/71f12a4ffb7658e71a010866d1805a84. Dataset accessed 6/25/2019", "New York State Department of Health Office of Public Health. 2019. Deer Tick Surveillance: Adults (Oct to Dec) excluding Powassan virus: Beginning 2008. https://health.data.ny.gov/Health/Deer-Tick-Surveillance-Nymphs-May-to-Sept-excludin/kibp-u2ip", "New York State Department of Health Office of Public Health. 2019. Access Nymph Deer Tick Collection Data by County (Excluding Powassan Virus). https://health.data.ny.gov/Health/Deer-Tick-Surveillance-Nymphs-May-to-Sept-excludin/kibp-u2ip", "Ostfeld RS, Levi T, Keesing F, Oggenfuss K, Canham CD (2018) Data from: Tick-borne disease risk in a forest food web. Dryad Digital Repository. https://doi.org/10.5061/dryad.d1c8046", "Oliver JD, Bennett SW, Beati L, Bartholomay LC (2017) Range Expansion and Increasing Borrelia burgdorferi Infection of the Tick Ixodes scapularis (Acari: Ixodidae) in Iowa, 1990\u20132013. Journal of Medical Entomology 54(6): 1727-1734. https://doi.org/10.1093/jme/tjx121", "The Connecticut Agricultural Experiment Station. (n.d.). Summaries of tick testing. CT.gov. Retrieved May 12, 2022, from https://portal.ct.gov/CAES/Fact-Sheets/Tick-Summary/Summaries-of-Tick-Testing", "Jordan, R. A., & Egizi, A. (2019). The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006 - 2016. PloS one, 14(2), e0211778. https://doi.org/10.1371/journal.pone.0211778"]} 
    more » « less
  4. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  5. Abstract Background

    Many institutional and departmentally focused change efforts have sought to improve teaching in STEM through the promotion of evidence-based instructional practices (EBIPs). Even with these efforts, EBIPs have not become the predominant mode of teaching in many STEM departments. To better understand institutional change efforts and the barriers to EBIP implementation, we developed the Cooperative Adoption Factors Instrument (CAFI) to probe faculty member characteristics beyond demographic attributes at the individual level. The CAFI probes multiple constructs related to institutional change including perceptions of the degree of mutual advantage of taking an action (strategic complements), trust and interconnectedness among colleagues (interdependence), and institutional attitudes toward teaching (climate).

    Results

    From data collected across five STEM fields at three large public research universities, we show that the CAFI has evidence of internal structure validity based on exploratory and confirmatory factor analysis. The scales have low correlations with each other and show significant variation among our sampled universities as demonstrated by ANOVA. We further demonstrate a relationship between the strategic complements and climate factors with EBIP adoption through use of a regression analysis. In addition to these factors, we also find that indegree, a measure of opinion leadership, correlates with EBIP adoption.

    Conclusions

    The CAFI uses the CACAO model of change to link the intended outcome of EBIP adoption with perception of EBIPs as mutually reinforcing (strategic complements), perception of faculty having their fates intertwined (interdependence), and perception of institutional readiness for change (climate). Our work has established that the CAFI is sensitive enough to pick up on differences between three relatively similar institutions and captures significant relationships with EBIP adoption. Our results suggest that the CAFI is likely to be a suitable tool to probe institutional change efforts, both for change agents who wish to characterize the local conditions on their respective campuses to support effective planning for a change initiative and for researchers who seek to follow the progression of a change initiative. While these initial findings are very promising, we also recommend that CAFI be administered in different types of institutions to examine the degree to which the observed relationships hold true across contexts.

     
    more » « less