skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Abstract. This study explores how the continental lithospheric mantle (CLM) may be heated during channelized melt transport when there is thermal disequilibrium between (melt-rich) channels and surrounding (melt-poor) regions.Specifically, I explore the role of disequilibrium heat exchange in weakening and destabilizing the lithosphere from beneath as melts infiltrate into the lithosphere–asthenosphere boundary (LAB) in intraplate continental settings.During equilibration, hotter-than-ambient melts would be expected to heat the surrounding CLM, but we lack an understanding of the expected spatiotemporal scales and how these depend on channel geometries, infiltration duration, and transport rates.This study assesses the role of heat exchange between migrating material in melt-rich channels and their surroundings in the limit where advective effects are larger than diffusive heat transfer (Péclet numbers > 10).I utilize a 1D advection–diffusion model that includes thermal exchange between melt-rich channels and the surrounding melt-poor region, parameterized by the volume fraction of channels (ϕ), average relative velocity (vchannel) between material inside and outside of channels, channel spacing (d), and timescale of episodic or repeated melt infiltration (τ).The results suggest the following: (1) during episodic infiltration of hotter-than-ambient melt, a steady-state thermal reworking zone (TRZ) associated with spatiotemporally varying disequilibrium heat exchange forms at the LAB.(2) The TRZ grows by the transient migration of a disequilibrium-heating front at a material-dependent velocity, reaching a maximum steady-state width δ proportional to ϕvchannel(τ/d)n, where n≈2 for periodic thermal perturbations and n≈1 for a single finite-duration thermal pulse.For geologically reasonable model parameters, the spatiotemporal scales associated with establishment of the TRZ are comparable with those inferred for the migration of the LAB based on geologic observations within continental intra-plate settings, such as the western US.The results of this study suggest that, for channelized transport speeds of vchannel=1 m yr−1, channel spacings d≈102 m, and timescales of episodic melt infiltration τ≈101 kyr, the steady-state width of the TRZ in the lowermost CLM is ≈10 km.(3) Within the TRZ, disequilibrium heat exchange may contribute ≈10-5 W m−3 to the LAB heat budget.  more » « less
Award ID(s):
2120812
PAR ID:
10357412
Author(s) / Creator(s):
Date Published:
Journal Name:
Solid Earth
Volume:
13
Issue:
9
ISSN:
1869-9529
Page Range / eLocation ID:
1415 to 1430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study is motivated by the observed variability in trace element isotopic and chemical compositions of primitive (Si52 wt %) basalts in southwest North America (SWNA) during the Cenozoic transition from subduction to extension. Specifically, we focus on processes that may explain the enigmatic observation that in some localities, basalts with low Ta/Th, consistent with parental melts in a subduction setting, have signatures consistent with continental lithospheric mantle (CLM). In locations with the oldest CLM (Proterozoic and Archean), Cenozoic basalts with low Ta/Th have well below zero. We model channelized magma transport through the CLM using simple 1D transport models to explore the extent to which diffusive and reactive mass exchange can modify Nd isotopic compositions via open system melt‐wallrock interactions. For geologically reasonable channel spacings and volume fractions, we quantify the reactive assimilation rates required for incoming melt with a different than the wall‐rock to undergo a substantial isotopic shift during 10 km channelized melt transport. In the presence of grain boundaries, enhanced diffusion between melt‐rich channels and melt‐poor surrounding rock contributes to isotopic equilibration, however this effect is not enough to explain observations; our models suggest a significant contribution from reactive assimilation of wall‐rock. Additionally our models support the idea that the observed covariability in Ta/Th and in Cenozoic basalts cannot be attributed to transport alone and must also reflect the transition from subduction‐related to extension‐related parental melts in SWNA. 
    more » « less
  2. Abstract Continental formation models invoke subduction or plume‐related processes to create the buoyant, refractory character of continental lithospheric mantle (CLM). From similarities in melt depletion, major element composition, modal clinopyroxene, and Os isotope systematics it has been proposed that oceanic mantle lithosphere is the likely protolith to non‐cratonic CLM, however, a direct link between the two has been difficult to ascertain. Using dredged mantle peridotite xenoliths from the Ferrel Seamount, off the west coast of Baja California, Mexico, we show that tectonic isolation of an oceanic plate may lead to formation of non‐cratonic CLM. Ferrel xenoliths are coarse‐grained spinel lherzolite, or rare harzburgite. Bulk‐rock and clinopyroxene trace element compositions reveal two‐stages of melt refertilization following melt depletion, with infiltration by mid‐ocean ridge basalt‐type melts, followed by melt addition from host alkali basalt. Melt depletion correlations with187Os/188Os and highly siderophile element abundances indicate preserved melt depletion and refertilization processes are ancient. From these observations, the Ferrel xenoliths represent lithosphere from the abandoned Pacific‐Farallon ridge. The history of melt depletion, followed by MORB‐melt refertilization is consistent with the peridotites representing oceanic mantle lithosphere that was subsequently incorporated into the Baja‐Guadalupe microplate during “ridge jump.” These peridotites demonstrate that isolation of oceanic lithosphere that is rafted onto a continental margin provides a viable means for producing non‐cratonic CLM. We suggest that continuation of late‐stage, low degree melt refertilization may provide a link between oceanic lithosphere and non‐cratonic CLM and propose a tectonic model to preserve and facilitate this continued evolution. 
    more » « less
  3. The sliding speed of glaciers depends strongly on the water pressure at the ice‐sediment interface, which is controlled by the efficiency of water transport through a subglacial hydrological system. The least efficient component of the system consists of “distributed” flow everywhere beneath the ice, whereas the “channelized” drainage through large, thermally eroded conduits is more efficient. To understand the conditions under which the subglacial network channelizes, we perform a linear stability analysis of distributed flow, considering competition between thermal erosion and viscous ice collapse. The calculated growth rate gives a stability criterion, describing the minimum subglacial meltwater flux needed for channels to form, but also indicates the tendency to generate infinitely narrow channels in existing models. We demonstrate the need to include lateral heat diffusion when modeling melt incision to resolve channel widths, which allows continuum models to recover Röthlisberger channel behavior. We also show that low numerical resolution can suppress channel formation and lead to overestimates of water pressure. Our derived channelization criterion can be used to predict the character of subglacial hydrological systems without recourse to numerical simulations, with practical implications for understanding changes in ice velocity due to changes in surface melt runoff. 
    more » « less
  4. SUMMARY Following reanalysis of data from eight seismic networks that operated in the region surrounding the Pampean flat slab during the past several decades, we generated 3-D images of Vp, Vs and $$V_{\rm p}/V_{\rm s}$$ from a combination of arrival times of P and S waves from local earthquakes, and Rayleigh wave dispersion curves from both ambient noise and existing shear wave models. Among the robust features in these images is a low velocity, root-like structure that extends beneath the high Andes to a deflection in the flat slab, which suggests the presence of an overthickened Andean crust rather than a hypothesized continental lithospheric root. Most of the larger scale features observed in both the subducted Nazca plate and the overriding continental lithosphere are related to the intense seismic activity in and around the Juan Fernandez Ridge Seismic Zone (JFRSZ). $$V_{\rm p}/V_{\rm s}$$ ratios beneath, within and above the JFRSZ are generally lower (~1.65–1.68) than those in the surrounding Nazca and continental lithosphere (~1.74–1.80). While the higher continental lithosphere ratios are due to reduced Vs and likely a result of hydration, the lower JFRSZ related ratios are due to reduced Vp and can be explained by increased silica and CO2 originating from beneath the slab, perhaps in concert with supercritical fluid located within the fracture and fault networks associated with the JFR. These and related features such as a region of high Vp and Vs observed at the leading edge of the JFRSZ are consistent with a basal displacement model previously proposed for the Laramide flat-slab event, in which the eroded base of the continental lithosphere accumulates as a keel at the front end of the flat slab while compressional horizontal stresses cause it to buckle. An initial concave up bend in the slab facilitates the infiltration of silica and CO2-rich melts from beneath the slab in a manner analogous to petit spot volcanism, while a second, concave down bend, releases CO2 and supercritical fluid into the overlying continental lithosphere. 
    more » « less
  5. Abstract The density structure of the cratonic lithospheric mantle (CLM) remains debated. We suggest that one important reason for which many geodynamic studies favor neutrally buoyant CLM is that they adopted separate reference frames when estimating the isostatic effects of continental and oceanic lithosphere, while instead a globally consistent one should be used. This reflects a misconception that continental crust perfectly balances the surrounding oceanic lithosphere. Using a unified global reference frame with recent constraints on crustal properties and residual topography, we show that assuming neutrally buoyant CLM leads to prominent negative residual topography (∼−1.3 km) and positive residual gravity (∼354 mGal) within cratons relative to oceans, neither of which can be explained by the effects of the convecting mantle. This requires the CLM, especially that with thick keels, to be less compositionally buoyant and denser than previously thought, a conclusion supporting recent observations on CLM deformation. 
    more » « less