Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared.
more »
« less
Tomographic imaging of the Pampean flat slab: evidence of subduction erosion and volatile migration
SUMMARY Following reanalysis of data from eight seismic networks that operated in the region surrounding the Pampean flat slab during the past several decades, we generated 3-D images of Vp, Vs and $$V_{\rm p}/V_{\rm s}$$ from a combination of arrival times of P and S waves from local earthquakes, and Rayleigh wave dispersion curves from both ambient noise and existing shear wave models. Among the robust features in these images is a low velocity, root-like structure that extends beneath the high Andes to a deflection in the flat slab, which suggests the presence of an overthickened Andean crust rather than a hypothesized continental lithospheric root. Most of the larger scale features observed in both the subducted Nazca plate and the overriding continental lithosphere are related to the intense seismic activity in and around the Juan Fernandez Ridge Seismic Zone (JFRSZ). $$V_{\rm p}/V_{\rm s}$$ ratios beneath, within and above the JFRSZ are generally lower (~1.65–1.68) than those in the surrounding Nazca and continental lithosphere (~1.74–1.80). While the higher continental lithosphere ratios are due to reduced Vs and likely a result of hydration, the lower JFRSZ related ratios are due to reduced Vp and can be explained by increased silica and CO2 originating from beneath the slab, perhaps in concert with supercritical fluid located within the fracture and fault networks associated with the JFR. These and related features such as a region of high Vp and Vs observed at the leading edge of the JFRSZ are consistent with a basal displacement model previously proposed for the Laramide flat-slab event, in which the eroded base of the continental lithosphere accumulates as a keel at the front end of the flat slab while compressional horizontal stresses cause it to buckle. An initial concave up bend in the slab facilitates the infiltration of silica and CO2-rich melts from beneath the slab in a manner analogous to petit spot volcanism, while a second, concave down bend, releases CO2 and supercritical fluid into the overlying continental lithosphere.
more »
« less
- PAR ID:
- 10642053
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 243
- Issue:
- 3
- ISSN:
- 0956-540X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The structure of the lithosphere-asthenosphere boundary (LAB) beneath oceanic plates is key to understanding how plates interact with the underlying mantle. Prior contradictory geophysical observations have been used to argue for a thin, melt-rich boundary that decouples the plate from the rest of the mantle, or for a much broader anisotropic and thermally controlled boundary that indicates significant coupling with the rest of the mantle. The predictions of models based on these interpretations can be tested most easily in a subduction zone setting where the steady increase in pressure at the base of the subducting plate’s LAB will have differing effects on melt and anisotropy. Melt remains stable within the mantle to ~150-250 km (for carbonate melt) or to ~330 km (for silicate melt), while anisotropy induced by different processes should have no significant change until ~250 km to ~440 km depth. We calculate P-to-S receiver functions (PRFs) using varying frequency bands at broadband seismic stations with >4 years of data from the Servicio Geológico Colombiano’s Red Sismológica Nacional de Colombia to investigate the characteristics of the LAB of the subducting Nazca oceanic plate from the coast to the Andean foreland (corresponding to slab LAB depths of ~50 km to >400 km). The use of PRFs permits identification and analysis of anisotropy across the boundary while calculation at a range of frequency bands permits tuning of the PRFs to differing spatial scales to determine the size and abruptness of the boundary. We find that the P-to-S converted phase of the subducted Nazca plate’s LAB is detectable 4-5 seconds after the converted phase of the plate’s Moho to at least ~150 km depth. Assuming the slab has an average Vp/Vs of 1.75 to 1.78 and Vp of 8.2 km/s (+2.5% dVp), this corresponds to a plate thickness of ~50 km, matching the expected thickness given the Nazca plate’s age in the region (~10-20 Myrs). We find that the Nazca plate’s LAB is most consistently detectable in the <0.24 Hz band and largely undetectable in the <2.4 Hz band, indicating the LAB is gradational and between 10 and 30 km in thickness. Amplitude variations and complexities in the LAB converted phases further indicate that the boundary marks a change in anisotropy most consistent with the LAB representing a sheared zone between the plate and underlying mantle.more » « less
-
SUMMARY The Ecuadorian Andes are a complex region characterized by accreted oceanic terranes driven by the ongoing subduction of the oceanic Nazca plate beneath South America. Present-day tectonics in Ecuador are linked to the downgoing plate geometry featuring the subduction of the aseismic, oceanic Carnegie Ridge, which is currently entering the trench. Using seismic tomography, we jointly invert arrival times of P and S waves from local and teleseismic earthquakes with surface wave dispersion curves to image the structure of the forearc and magmatic arc of the Ecuadorian Andes. Our data set includes > 100 000 traveltimes recorded at 294 stations across Ecuador. Our images show the basement of the central forearc is composed of accreted oceanic terranes with high elastic wave speeds. Inboard of the Carnegie Ridge, the westernmost forearc and coastal cordilleras display relatively low Vp and Vs and high Vp/Vs values, which we attribute to the increased hydration and fracturing of the overriding plate due to the subduction of the thick oceanic crust of the Carnegie Ridge. We additionally image across-arc differences in magmatic architecture. The frontal volcanic arc overlies accreted terranes and is characterized by low velocities and high Vp/Vs indicative of partial melt reservoirs which are limited to the upper crust. In contrast, the main arc displays regions of partial melt across a wider range of depths. The Subandean zone of Ecuador has two active volcanoes built on continental crust suggesting the arc is expanding eastwards. The mid to lower crust does not show indications of being modified from the magmatic process. We infer that the slab is in the process of flattening as a consequence of early-stage subduction of the buoyant Carnegie Ridge.more » « less
-
Abstract Subduction of the Nazca plate results in the uneven distributions of earthquakes and arc volcanoes along the South America's western margin. Here, we construct a high‐resolution shear‐wave velocity model from immediately offshore to the backarc in South America, using advanced full‐wave ambient noise tomography. Our new model confirms and provides further constraints on three major features, including (a) extensive low‐velocity anomalies within the continental crust, (b) two high‐velocity flat slab segments located beneath southern Peru and central Chile, and (c) complex slab geometry at flat‐to‐normal transitional subduction. The flat slab segments roughly correlate with the volcanic gaps but not with the seismicity gaps. We suggest that variations of slab geometry along strike and down dip have significantly modified the flow patterns within the mantle wedge. Subduction of oceanic ridges has altered the slab dehydration processes, which can influence the distribution of arc volcanism and the occurrence of intermediate‐depth earthquakes.more » « less
-
Hans Thybo (Ed.)The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.more » « less
An official website of the United States government
