Programming by example allows users to create programs without coding, by simply specifying input and output pairs.We introduce the problem of digital signal processing programming by example (DSP-PBE), where users specify input and output wave files, and a tool automatically synthesizes a program that transforms the input to the output. This program can then be applied to new wave files, giving users a new way to interact with music and program code. We formally define the problem of DSP-PBE, and provide a first implementation of a solution that can handle synthesis over commutative filters.
more »
« less
LooPy: interactive program synthesis with control structures
One vision for program synthesis, and specifically for programming by example (PBE), is an interactive programmer's assistant, integrated into the development environment. To make program synthesis practical for interactive use, prior work on Small-Step Live PBE has proposed to limit the scope of synthesis to small code snippets, and enable the users to provide local specifications for those snippets. This paradigm, however, does not work well in the presence of loops. We present LooPy, a synthesizer integrated into a live programming environment, which extends Small-Step Live PBE to work inside loops and scales it up to synthesize larger code snippets, while remaining fast enough for interactive use. To allow users to effectively provide examples at various loop iterations, even when the loop body is incomplete, LooPy makes use of live execution , a technique that leverages the programmer as an oracle to step over incomplete parts of the loop. To enable synthesis of loop bodies at interactive speeds, LooPy introduces Intermediate State Graph , a new data structure, which compactly represents a large space of code snippets composed of multiple assignment statements and conditionals. We evaluate LooPy empirically using benchmarks from competitive programming and previous synthesizers, and show that it can solve a wide variety of synthesis tasks at interactive speeds. We also perform a small qualitative user study which shows that LooPy's block-level specifications are easy for programmers to provide.
more »
« less
- Award ID(s):
- 2107397
- PAR ID:
- 10357425
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 5
- Issue:
- OOPSLA
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools.more » « less
-
We present an enumerative program synthesis framework calledcomponent-based refactoringthat can refactor direct style code that does not use library components into equivalent combinator style code that does use library components. This framework introduces a sound but incomplete technique to check the equivalence of direct code and combinator code calledequivalence by canonicalizationthat does not rely on input-output examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations, leveraging decades of research from the programming languages community. We instantiated our new synthesis framework in two contexts: (i) higher-order functional combinators such as and in the statically-typed functional programming language Elm and (ii) high-performance numerical computing combinators provided by the NumPy library for Python. We implemented both instantiations in a tool called Cobbler and evaluated it on thousands of real programs to test the performance of the component-based refactoring framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed refactoring can apply across a range of domains without specification beyond the input program.more » « less
-
Novice programmers often struggle with code understanding and debugging. Live Programming environments visualize the runtime values of a program each time it is modified to provide immediate feedback, which help with tracing the program execution. This paper presents the use of a Live Programming tool in a CS1 course to better understand the impact of Live Programming on novices’ learning metrics and their perceptions of the tool. We conducted a within-subjects study at a large public university in a CS1 course in Python (N=237) where students completed tasks in a lab setting, in some cases with a Live Programming environment, and in some cases without. Through post-lab surveys and open-ended feedback, we measured how well students understood the material and how students perceived the programming environment. To understand the impact of Live Programming, we compared the collected data for students who used Live Programming with the data for students who did not. We found that while learning outcomes were the same regardless of whether Live Programming was used or not, students who used the Live Programming tool completed some code tracing tasks faster. Furthermore, students liked the Live Programming environment more, and rated it as more helpful for their learning.more » « less
-
Software developers create and share code online to demonstrate programming language concepts and programming tasks. Code snippets can be a useful way to explain and demonstrate a programming concept, but may not always be directly executable. A code snippet can contain parse errors, or fail to execute if the environment contains unmet dependencies. This paper presents an empirical analysis of the executable status of Python code snippets shared through the GitHub gist system, and the ability of developers familiar with software configuration to correctly configure and run them. We find that 75.6% of gists require non-trivial configuration to overcome missing dependencies, configuration files, reliance on a specific operating system, or some other environment configuration. Our study also suggests the natural assumption developers make about resource names when resolving configuration errors is correct less than half the time. We also present Gistable, a database and extensible framework built on GitHub's gist system, which provides executable code snippets to enable reproducible studies in software engineering. Gistable contains 10,259 code snippets, approximately 5,000 with a Dockerfile to configure and execute them without import error. Gistable is publicly available at https://github.com/gistable/gistable.more » « less
An official website of the United States government

