Digital signatures are a fundamental building block for ensuring integrity and authenticity of contents delivered by the Named Data Networking (NDN) systems. However, current digital signature schemes adopted by NDN open source libraries have a high computational and communication overhead making them unsuitable for high throughput applications like video streaming and virtual reality gaming. In this poster, we propose a real-time digital signature mechanism for NDN based on the offline-online signature framework known as Structure-free and Compact Real-time Authentication scheme (SCRA). Our signature mechanism significantly reduces the signing and verification costs and provides different variants to optimize for the specific requirements of applications (i.e. signing overhead, verification overhead or communication cost). Our experiments results show that SCRA is a suitable framework for latency-sensitive NDN applications.
more »
« less
An Information Centric Framework for Weather Sensing Data
Weather sensing and forecasting has become increasingly accurate in the last decade thanks to high-resolution radars, efficient computational algorithms, and high-performance computing facilities. Through a distributed and federated network of radars, scientists can make high-resolution observations of the weather conditions on a scale that benefits public safety, commerce, transportation, and other fields. While weather radars are critical infrastructure, they are often located in remote areas with poor network connectivity. Data retrieved from these radars are often delayed or lost, or even lack proper synchronization, resulting in sub-optimal weather prediction. This work applies Named Data Networking (NDN) to a federation of weather sensing radars for efficient content addressing and retrieval. We identify weather data based on a hierarchical naming scheme that allows us to explicitly access desired files. We demonstrate that compared to the window-based mechanism in TCP/IP, an NDN based mechanism improves data quality, reduces uncertainty, and enhances weather prediction.
more »
« less
- Award ID(s):
- 2018074
- PAR ID:
- 10357432
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Communications Workshops (ICC Workshops)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying Internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype, we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, as opposed to IP-only, our hybrid setup achieves better average bitrate and better perceived visual quality (computed via VMAF metric) over live video streaming services. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE.more » « less
-
With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, our hybrid setup achieves better average bitrate over live video streaming services than its IP-only alternative. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE.more » « less
-
Archived data from the US network of weather radars hold detailed information about bird migration over the last 25 years, including very high-resolution partial measurements of velocity. Historically, most of this spatial resolution is discarded and velocities are summarized at a very small number of locations due to modeling and algorithmic limitations. This paper presents a Gaussian process (GP) model to reconstruct high-resolution full velocity fields across the entire US. The GP faithfully models all aspects of the problem in a single joint framework, including spatially random velocities, partial velocity measurements, station-specific geometries, measurement noise, and an ambiguity known as aliasing. We develop fast inference algorithms based on the FFT; to do so, we employ a creative use of Laplace's method to sidestep the fact that the kernel of the joint process is non-stationary.more » « less
-
Advanced imaging and DNA sequencing technologies now enable the diverse biology community to routinely generate and analyze terabytes of high resolution biological data. The community is rapidly heading toward the petascale in single investigator laboratory settings. As evidence, the single NCBI SRA central DNA sequence repository contains over 45 petabytes of biological data. Given the geometric growth of this and other genomics repositories, an exabyte of mineable biological data is imminent. The challenges of effectively utilizing these datasets are enormous as they are not only large in the size but also stored in geographically distributed repositories in various repositories such as National Center for Biotechnology Information (NCBI), DNA Data Bank of Japan (DDBJ), European Bioinformatics Institute (EBI), and NASA’s GeneLab. In this work, we first systematically point out the data-management challenges of the genomics community. We then introduce Named Data Networking (NDN), a novel but well-researched Internet architecture, is capable of solving these challenges at the network layer. NDN performs all operations such as forwarding requests to data sources, content discovery, access, and retrieval using content names (that are similar to traditional filenames or filepaths) and eliminates the need for a location layer (the IP address) for data management. Utilizing NDN for genomics workflows simplifies data discovery, speeds up data retrieval using in-network caching of popular datasets, and allows the community to create infrastructure that supports operations such as creating federation of content repositories, retrieval from multiple sources, remote data subsetting, and others. Named based operations also streamlines deployment and integration of workflows with various cloud platforms. Our contributions in this work are as follows 1) we enumerate the cyberinfrastructure challenges of the genomics community that NDN can alleviate, and 2) we describe our efforts in applying NDN for a contemporary genomics workflow (GEMmaker) and quantify the improvements. The preliminary evaluation shows a sixfold speed up in data insertion into the workflow. 3) As a pilot, we have used an NDN naming scheme (agreed upon by the community and discussed in Section 4 ) to publish data from broadly used data repositories including the NCBI SRA. We have loaded the NDN testbed with these pre-processed genomes that can be accessed over NDN and used by anyone interested in those datasets. Finally, we discuss our continued effort in integrating NDN with cloud computing platforms, such as the Pacific Research Platform (PRP). The reader should note that the goal of this paper is to introduce NDN to the genomics community and discuss NDN’s properties that can benefit the genomics community. We do not present an extensive performance evaluation of NDN—we are working on extending and evaluating our pilot deployment and will present systematic results in a future work.more » « less
An official website of the United States government

