skip to main content


Title: Toward controlling wetting hysteresis with nanostructured surfaces derived from block copolymer self-assembly
Abstract The synthesis of nanostructured surfaces via block copolymer (BCP) self-assembly enables a precise control of the surface feature shape within a range of dimensions of the order of tens of nanometers. This work studies how to exploit this ability to control the wetting hysteresis and liquid adhesion forces as the substrate undergoes chemical aging and changes in its intrinsic wettability. Via BCP self-assembly we fabricate nanostructured surfaces on silicon substrates with a hexagonal array of regular conical pillars having a fixed period (52 nm) and two different heights (60 and 200 nm), which results in substantially different lateral and top surface areas of the nanostructure. The wetting hysteresis of the fabricated surfaces is characterized using force–displacement measurements under quasistaic conditions and over sufficiently long periods of time for which the substrate chemistry and surface energy, characterized by the Young contact angle, varies significantly. The experimental results and theoretical analysis indicate that controlling the lateral and top area of the nanostructure not only controls the degree of wetting hysteresis but can also make the advancing and receding contact angles less susceptible to chemical aging. These results can help rationalize the design of nanostructured surfaces for different applications such as self-cleaning, enhanced heat transfer, and drag reduction in micro/nanofluidic devices.  more » « less
Award ID(s):
1922639 2016204
NSF-PAR ID:
10357991
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanotechnology
Volume:
33
Issue:
45
ISSN:
0957-4484
Page Range / eLocation ID:
455302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales.

     
    more » « less
  2. The multiscale architecture of electrochemical energy storage (EES) materials critically impacts device performance, including energy, power, and durability. The pore space of nano‐ to macrostructured electrodes determines mass transport within the electrolyte and defines the effective energy density. The dimensions of the active charge‐storing materials can increase stability during cycling by accommodating strains from electrochemical–mechanical coupling while also defining surface area that increases capacitive charge storage, decreases charge‐transfer resistance, but also leads to low efficiency and degradation from interfacial reactions. Thus, elucidating and developing a fundamental understanding of these correlations requires materials with precisely tunable nanoscale architectures. Herein, approaches that take advantage of the nanoscale control offered by block copolymer (BCP) self‐assembly are reviewed and insights gained from associated nanoscale phenomena observed in EES are highlighted. Systematic studies that use custom‐tailored BCPs to reveal fundamental nanostructure–property–performance relationships are emphasized. Importantly, most reports of nanostructured materials utilize low loadings and thin electrodes and results represent mass transfer limitations at the particle scale. However, as cell‐level performance involves mass transport over 10–100s of micrometers, recently emerging BCP‐based processes are further highlighted, leading to hierarchical meso/macroporous materials needed for creating multiscale structure–performance relationships and next‐generation energy storage material architectures.

     
    more » « less
  3. Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces. 
    more » « less
  4. The growth of laser-induced nanocarbons, referred to here are LINC for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e. from below 20° to above 110°. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process-structure-property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges for isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.

     
    more » « less
  5. Abstract

    Self‐propulsion of highly wetting liquids is important in heat exchanger, air conditioning, and refrigeration systems. However, it is challenging to achieve such a spontaneous motion as these liquids tend to wet all the surfaces due to their ultralow surface tensions. Despite that extensive asymmetric surface structures and gradient chemical coatings are developed for directional droplet transport, they will be flooded and covered by these liquids. Here, this challenge is addressed by creating a gradient quasi‐liquid surface to achieve the self‐propulsion of droplets with surface tensions down to 10.0 mN m−1. Such a surface engineered by tethering flexible polymers with gradient grafting density shows ultralow contact angle hysteresis (<1o) to highly wetting liquids. Thus, the surface can simultaneously provide sufficient driving forces through the gradient wettability and negligible retention forces through the slippery boundary lubrication for spontaneous droplet movement. Moreover, continual self‐propulsion of tiny droplets is achieved by spraying highly wetting liquids in simulated condensation conditions and demonstrates that adding temperature gradient can further accelerate the self‐propulsion. The study provides a new paradigm to promote passive removal of highly wetting droplets, leading to potential impacts in enhancing condensation heat transfer regardless of surface orientations.

     
    more » « less