Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80
- Award ID(s):
- 1927130
- PAR ID:
- 10358354
- Date Published:
- Journal Name:
- Universe
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M ⊙), binary stars at various initial periods and solar metallicity (Z = 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M ⊙, while models with initial primary masses ≥35M ⊙can also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30M ⊙and higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10M ⊙primary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary. -
Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26 Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36 Cl and 41 Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙ ), rotating (with initial velocities of 150 and 300 km s −1 ) and nonrotating single stars at solar metallicity ( Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26 Al, 36 Cl, and 41 Ca, and the stable isotopes 19 F and 22 Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19 F and 22 Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26 Al and 41 Ca can be matched with by models with initial masses ≥40 M ⊙ , while 36 Cl is matched only by our most massive models, ≥60 M ⊙ . 60 Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26 Al, 36 Cl, and 41 Ca in the ESS.more » « less
-
Context. The 26 Al short-lived radioactive nuclide is the source of the observed galactic diffuse γ -ray emission at 1.8 MeV. While different sources of 26 Al have been explored, such as asymptotic giant branch stars, massive stellar winds, and supernovae, the contribution of very massive stars has not been studied so far. Aims. We study the contribution of the stellar wind of very massive stars, here, stars with initial masses between 150 and 300 M ⊙ , to the enrichment in 26 Al of the galactic interstellar medium. Methods. We studied the production of 26 Al by studying rotating and non-rotating very massive stellar models with initial masses between 150 and 300 M ⊙ for metallicities Z = 0.006, 0.014, and 0.020. We compared this result to a simple Milky Way model and took the metallicity and the star formation rate gradients into account. Results. We obtain that very massive stars in the Z = 0.006 − 0.020 metallicity range might be very significant contributors to the 26 Al enrichment of the interstellar medium. Typically, the contribution of the winds of massive stars to the total quantity of 26 Al in the Galaxy increases by 150% when very massive stars are considered. Conclusions. Despite their rarity, very massive stars might be important contributors to 26 Al and might overall be very important actors for nucleosynthesis in the Galaxy.more » « less
-
ABSTRACT Consistent with the notion that most Sun-like stars form in multistellar systems, this study explores the impact of a temporarily bound stellar binary companion on the early dynamical evolution of the Solar system. Using N-body simulations, we illustrate how such a companion markedly enhances the trapping of scattered bodies on inner Oort cloud-like orbits, with perihelion distances exceeding $q \gt 40$ au. We further find that the orbital geometry of the Sun-binary system plays a central role in regulating the efficiency of small-body implantation on to high-perihelion orbits, and demonstrate that this process is driven by the von Zeipel–Kozai–Lidov mechanism. Incorporating the transiency of stellar clusters and the eventual Sun-binary pair dissociation due to passing stars, we show how the binary can be stripped away by an approximately solar-mass ejector star, with only a modest impact on the generated inner Oort cloud population. Collectively, our results highlight a previously underappreciated process that could have contributed to the formation of the inner Oort cloud.
-
We investigate the origin in the early Solar System of the short-lived radionuclide 244Pu (with a half life of 80 Myr) produced by the rapid (r) neutron-capture process. We consider two large sets of r-process nucleosynthesis models and analyse if the origin of 244Pu in the ESS is consistent with that of the other r and slow (s) neutron-capture process radioactive nuclei. Uncertainties on the r-process models come from both the nuclear physics input and the astrophysical site. The former strongly affects the ratios of isotopes of close mass (129I/127I, 244Pu/238U, and 247Pu/235U). The 129I/247Cm ratio, instead, which involves isotopes of a very different mass, is much more variable than those listed above and is more affected by the physics of the astrophysical site. We consider possible scenarios for the evolution of the abundances of these radioactive nuclei in the galactic interstellar medium and verify under which scenarios and conditions solutions can be found for the origin of 244Pu that are consistent with the origin of the other isotopes. Solutions are generally found for all the possible different regimes controlled by the interval (δ) between additions from the source to the parcel of interstellar medium gas that ended up in the Solar System, relative to decay timescales. If r-process ejecta in interstellar medium are mixed within a relatively small area (leading to a long δ), we derive that the last event that explains the 129I and 247Cm abundances in the early Solar System can also account for the abundance of 244Pu. Due to its longer half life, however, 244Pu may have originated from a few events instead of one only. If r-process ejecta in interstellar medium are mixed within a relatively large area (leading to a short δ), we derive that the time elapsed from the formation of the molecular cloud to the formation of the Sun was 9-16 Myr.more » « less