skip to main content


Title: On the fast spreading scenario
We study two types of divergence-free fluid flows on unbounded domains in two and three dimensions—hyperbolic and shear flows—and their influence on chemotaxis and combustion. We show that fast spreading by these flows, when they are strong enough, can suppress growth of solutions to PDE modeling these phenomena. This includes prevention of singularity formation and global regularity of solutions to advective Patlak-Keller-Segel equations on R 2 \mathbb {R}^2 and R 3 \mathbb {R}^3 , confirming numerical observations by Khan, Johnson, Cartee, and Yao [Involve 9 (2016), pp. 119–131], as well as quenching in advection-reaction-diffusion equations.  more » « less
Award ID(s):
1900943
NSF-PAR ID:
10358327
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications of the American Mathematical Society
Volume:
2
Issue:
4
ISSN:
2692-3688
Page Range / eLocation ID:
149 to 171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the behavior of solutions to the incompressible 2dEuler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier–Stokes problems. We exhibit a large family of new, non-trivial stationary states that are arbitrarily close to the Kolmogorov flow on the square torus$$\mathbb {T}^2$$T2in analytic regularity. This situation contrasts strongly with the setting of some monotone shear flows, such as the Couette flow: there the linearized problem exhibits an “inviscid damping” mechanism that leads to relaxation of perturbations of the base flows back to nearby shear flows. Our results show that such a simple description of the long-time behavior is not possible for solutions near the Kolmogorov flow on$$\mathbb {T}^2$$T2. Our construction of the new stationary states builds on a degeneracy in the global structure of the Kolmogorov flow on$$\mathbb {T}^2$$T2, and we also show a lack of correspondence between the linearized description of the set of steady states and its true nonlinear structure. Both the Kolmogorov flow on a rectangular torus and the Poiseuille flow in a channel are very different. We show that the only stationary states near them must indeed be shears, even in relatively low regularity. In addition, we show that this behavior is mirrored closely in the related Navier–Stokes settings: the linearized problems near the Poiseuille and Kolmogorov flows both exhibit an enhanced rate of dissipation. Previous work by us and others shows that this effect survives in the full, nonlinear problem near the Poiseuille flow and near the Kolmogorov flow on rectangular tori, provided that the perturbations lie below a certain threshold. However, we show here that the corresponding result cannot hold near the Kolmogorov flow on$${\mathbb T}^2$$T2.

     
    more » « less
  2. Abstract We study a norm-sensitive Diophantine approximation problem arising from the work of Davenport and Schmidt on the improvement of Dirichlet’s theorem. Its supremum norm case was recently considered by the 1st-named author and Wadleigh [ 17], and here we extend the set-up by replacing the supremum norm with an arbitrary norm. This gives rise to a class of shrinking target problems for one-parameter diagonal flows on the space of lattices, with the targets being neighborhoods of the critical locus of the suitably scaled norm ball. We use methods from geometry of numbers to generalize a result due to Andersen and Duke [ 1] on measure zero and uncountability of the set of numbers (in some cases, matrices) for which Minkowski approximation theorem can be improved. The choice of the Euclidean norm on $\mathbb{R}^2$ corresponds to studying geodesics on a hyperbolic surface, which visit a decreasing family of balls. An application of the dynamical Borel–Cantelli lemma of Maucourant [ 25] produces, given an approximation function $\psi $, a zero-one law for the set of $\alpha \in \mathbb{R}$ such that for all large enough $t$ the inequality $\left (\frac{\alpha q -p}{\psi (t)}\right )^2 + \left (\frac{q}{t}\right )^2 < \frac{2}{\sqrt{3}}$ has non-trivial integer solutions. 
    more » « less
  3. We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems. 
    more » « less
  4. null (Ed.)
    Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities. 
    more » « less
  5. Abstract

    Given a suitable solutionV(tx) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$u(0,x)V(0,x)+H-1(R). Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$V(0,x)H5(R/Z)satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$V0. In that setting, it is known that$$H^{-1}(\mathbb {R})$$H-1(R)is sharp in the class of$$H^s(\mathbb {R})$$Hs(R)spaces.

     
    more » « less