We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems.
more »
« less
On the fast spreading scenario
We study two types of divergence-free fluid flows on unbounded domains in two and three dimensions—hyperbolic and shear flows—and their influence on chemotaxis and combustion. We show that fast spreading by these flows, when they are strong enough, can suppress growth of solutions to PDE modeling these phenomena. This includes prevention of singularity formation and global regularity of solutions to advective Patlak-Keller-Segel equations on R 2 \mathbb {R}^2 and R 3 \mathbb {R}^3 , confirming numerical observations by Khan, Johnson, Cartee, and Yao [Involve 9 (2016), pp. 119–131], as well as quenching in advection-reaction-diffusion equations.
more »
« less
- PAR ID:
- 10358327
- Date Published:
- Journal Name:
- Communications of the American Mathematical Society
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2692-3688
- Page Range / eLocation ID:
- 149 to 171
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the behavior of solutions to the incompressible 2dEuler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier–Stokes problems. We exhibit a large family of new, non-trivial stationary states that are arbitrarily close to the Kolmogorov flow on the square torus$$\mathbb {T}^2$$ in analytic regularity. This situation contrasts strongly with the setting of some monotone shear flows, such as the Couette flow: there the linearized problem exhibits an “inviscid damping” mechanism that leads to relaxation of perturbations of the base flows back to nearby shear flows. Our results show that such a simple description of the long-time behavior is not possible for solutions near the Kolmogorov flow on$$\mathbb {T}^2$$ . Our construction of the new stationary states builds on a degeneracy in the global structure of the Kolmogorov flow on$$\mathbb {T}^2$$ , and we also show a lack of correspondence between the linearized description of the set of steady states and its true nonlinear structure. Both the Kolmogorov flow on a rectangular torus and the Poiseuille flow in a channel are very different. We show that the only stationary states near them must indeed be shears, even in relatively low regularity. In addition, we show that this behavior is mirrored closely in the related Navier–Stokes settings: the linearized problems near the Poiseuille and Kolmogorov flows both exhibit an enhanced rate of dissipation. Previous work by us and others shows that this effect survives in the full, nonlinear problem near the Poiseuille flow and near the Kolmogorov flow on rectangular tori, provided that the perturbations lie below a certain threshold. However, we show here that the corresponding result cannot hold near the Kolmogorov flow on$${\mathbb T}^2$$ .more » « less
-
null (Ed.)Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities.more » « less
-
Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$.more » « less
-
Let $$\mathcal{D}$$ be a dataset of smooth {3D}-surfaces, partitioned into disjoint classes $$\mli{CL}_j$$, $$j= 1, \ldots, k$$. We show how \emph{optimized diffeomorphic registration} applied to large numbers of pairs $$S,S' \in \mathcal{D}$$ can provide descriptive feature vectors to implement automatic classification on $$\mathcal{D}$$, and generate classifiers invariant by rigid motions in $$\mathbb{R}^3$$. To enhance accuracy of automatic classification, we enrich the smallest classes $$\mli{CL}_j$$ by diffeomorphic interpolation of smooth surfaces between pairs $$S,S' \in \mli{CL}_j$$. We also implement small random perturbations of surfaces $$S\in \mli{CL}_j$$ by random flows of smooth diffeomorphisms $$F_t:\mathbb{R}^3 \to \mathbb{R}^3$$. Finally, we test our automatic classification methods on a cardiology data base of discretized mitral valve surfaces.more » « less
An official website of the United States government

