skip to main content

Title: Very massive star winds as sources of the short-lived radioactive isotope 26 Al
Context. The 26 Al short-lived radioactive nuclide is the source of the observed galactic diffuse γ -ray emission at 1.8 MeV. While different sources of 26 Al have been explored, such as asymptotic giant branch stars, massive stellar winds, and supernovae, the contribution of very massive stars has not been studied so far. Aims. We study the contribution of the stellar wind of very massive stars, here, stars with initial masses between 150 and 300 M ⊙ , to the enrichment in 26 Al of the galactic interstellar medium. Methods. We studied the production of 26 Al by studying rotating and non-rotating very massive stellar models with initial masses between 150 and 300 M ⊙ for metallicities Z  = 0.006, 0.014, and 0.020. We compared this result to a simple Milky Way model and took the metallicity and the star formation rate gradients into account. Results. We obtain that very massive stars in the Z  = 0.006 − 0.020 metallicity range might be very significant contributors to the 26 Al enrichment of the interstellar medium. Typically, the contribution of the winds of massive stars to the total quantity of 26 Al in the Galaxy increases by 150% when very massive stars are considered. Conclusions. Despite their rarity, very massive stars might be important contributors to 26 Al and might overall be very important actors for nucleosynthesis in the Galaxy.  more » « less
Award ID(s):
1927130 1911061
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26 Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36 Cl and 41 Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙ ), rotating (with initial velocities of 150 and 300 km s −1 ) and nonrotating single stars at solar metallicity ( Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26 Al, 36 Cl, and 41 Ca, and the stable isotopes 19 F and 22 Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19 F and 22 Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26 Al and 41 Ca can be matched with by models with initial masses ≥40 M ⊙ , while 36 Cl is matched only by our most massive models, ≥60 M ⊙ . 60 Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26 Al, 36 Cl, and 41 Ca in the ESS. 
    more » « less

    We present a grid of stellar models at supersolar metallicity (Z = 0.020) extending the previous grids of Geneva models at solar and sub-solar metallicities. A metallicity of Z = 0.020 was chosen to match that of the inner Galactic disc. A modest increase of 43 per cent (= 0.02/0.014) in metallicity compared to solar models means that the models evolve similarly to solar models but with slightly larger mass-loss. Mass-loss limits the final total masses of the supersolar models to 35 M⊙ even for stars with initial masses much larger than 100 M⊙. Mass-loss is strong enough in stars above 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) to remove the entire hydrogen-rich envelope. Our models thus predict SNII below 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) and SNIb (possibly SNIc) above that. We computed both isochrones and synthetic clusters to compare our supersolar models to the Westerlund 1 (Wd1) massive young cluster. A synthetic cluster combining rotating and non-rotating models with an age spread between log10(age/yr) = 6.7 and 7.0 is able to reproduce qualitatively the observed populations of WR, RSG, and YSG stars in Wd1, in particular their simultaneous presence at $\log _{10}(L/\mathit {\mathrm{ L}}_{\odot })$ = 5–5.5. The quantitative agreement is imperfect and we discuss the likely causes: synthetic cluster parameters, binary interactions, mass-loss and their related uncertainties. In particular, mass-loss in the cool part of the HRD plays a key role.

    more » « less

    Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fluorine by comparing chemical evolution models to observations of fluorine abundances in Milky Way stars covering a metallicity range of −2 < [Fe/H] < 0.4 and upper limits in the range of −3.4 < [Fe/H] < −2.3. In our models, we use a variety of stellar yield sets in order to explore the impact of varying both asymptotic giant branch (AGB) and massive star yields on the chemical evolution of fluorine. In particular, we investigate different prescriptions for initial rotational velocity in massive stars as well as a metallicity-dependent mix of rotational velocities. We find that the observed [F/O] and [F/Fe] abundance ratios at low metallicity and the increasing trend of [F/Ba] at [Fe/H] ≳ −1 can only be reproduced by chemical evolution models assuming, at all metallicities, a contribution from rapidly rotating massive stars with initial rotational velocities as high as 300 km s−1. A mix of rotational velocities may provide a more physical solution than the sole use of massive stars with vrot  =  300 km s−1, which are predicted to overestimate the fluorine and average s-process elemental abundances at [Fe/H] ≳ −1. The contribution from AGB stars is predicted to start at [Fe/H] ≈ −1 and becomes increasingly important at high metallicity, being strictly coupled to the evolution of the nitrogen abundance. Finally, by using modern yield sets, we investigate the fluorine abundances of Wolf–Rayet winds, ruling them out as dominant contributors to the galactic fluorine.

    more » « less
  4. ABSTRACT We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor. 
    more » « less
  5. Abstract The radioisotope 26 Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26 Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26 Al in these astrophysical objects, including (but not limited to) 25 Mg( p , γ ) 26 Al, 26 Al( p , γ ) 27 Si, and 26 Al( n , p / α ). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26 Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work. 
    more » « less