skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Primary Productivity in the Mid-Atlantic Bight: Is the Shelf Break a Location of Enhanced Productivity?
Estimates of primary production represent the input of carbon into food webs, as well as the initial step in the biological pump. For the past 60 years, much of the productivity information has been obtained using measurements of 14 C-bicarbonate removal during simulated in situ incubations. However, such measurements often do not reflect the complexity of the environment, and also suffer from uncertainties, biases and limitations. A vertically resolved bio-optical model has been used to estimate productivity based on profiles commonly assessed in oceanographic investigations, but comparisons with simultaneous measurements of 14 C-uptake are limited. We conducted three cruises off the coast of New England that included sampling continental shelf waters, the shelf-break region, and deeper waters at scales of 7 km, all of which had productivity estimated by a vertically resolved productivity model as well as by traditional 14 C-uptake measurements using simulated in situ techniques. We found that the vertically resolved bio-optical model gave results that appear to be more robust and resolved productivity at smaller vertical and horizontal scales, and seem less biased by some of the uncertainties in 14 C-uptake measurements. Both estimates suggest that the New England waters are highly productive due to a variety of biological and physical processes occurring at different times of the year, but there was no consistent stimulation at the shelf break over the time scales of these estimates.  more » « less
Award ID(s):
1657803 1657855
PAR ID:
10358611
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A multimethod process‐oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long‐Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24‐h in situ measurements (14C and15NO3‐uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high‐resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems. 
    more » « less
  2. Abstract Despite the ubiquity of eddies at the Mid‐Atlantic Bight shelf‐break front, direct observations of frontal eddies at the shelf‐break front are historically sparse and their biological impact is mostly unknown. This study combines high resolution physical and biological snapshots of two frontal eddies with an idealized 3‐D regional model to investigate eddy formation, kinematics, upwelling patterns, and biological impacts. During May 2019, two eddies were observed in situ at the shelf‐break front. Each eddy showed evidence of nutrient and chlorophyll enhancement despite rotating in opposite directions and having different physical characteristics. Our results suggest that cyclonic eddies form as shelf waters are advected offshore and slope waters are advected shoreward, forming two filaments that spiral inward until sufficient water is entrained. Rising isohalines and upwelled slope water dye tracer within the model suggest that upwelling coincided with eddy formation and persisted for the duration of the eddy. In contrast, anticyclonic eddies form within troughs of the meandering shelf‐break front, with amplified frontal meanders creating recirculating flow. Upwelling of subsurface shelf water occurs in the form of detached cold pool waters during the formation of the anticyclonic eddies. The stability properties of each eddy type were estimated via the Burger number and suggest different ratios of baroclinic versus barotropic contributions to frontal eddy formation. Our observations and model results indicate that both eddy types may persist for more than a month and upwelling in both eddy types may have significant impacts on biological productivity of the shelf break. 
    more » « less
  3. Abstract Previous studies showed that satellite‐derived estimates of chlorophyllain coastal polynyas over the Antarctic continental shelf are correlated with the basal melt rate of adjacent ice shelves. A 5‐km resolution ocean/sea ice/ice shelf model of the Southern Ocean is used to examine mechanisms that supply the limiting micronutrient iron to Antarctic continental shelf surface waters. Four sources of dissolved iron are simulated with independent tracers, assumptions about the source iron concentration for each tracer, and an idealized summer biological uptake. Iron from ice shelf melt provides about 6% of the total dissolved iron in surface waters. The contribution from deep sources of iron on the shelf (sediments and Circumpolar Deep Water) is much larger at 71%. The relative contribution of dissolved iron supply from basal melt driven overturning circulation within ice shelf cavities is heterogeneous around Antarctica, but at some locations, such as the Amundsen Sea, it is the primary mechanism for transporting deep dissolved iron to the surface. Correlations between satellite chlorophyllain coastal polynyas around Antarctica and simulated dissolved iron confirm the previous suggestion that productivity of the polynyas is linked to the basal melt of adjacent ice shelves. This correlation is the result of upward advection or mixing of iron‐rich deep waters due to circulation changes driven by ice shelf melt, rather than a direct influence of iron released from melting ice shelves. This dependence highlights the potential vulnerability of coastal Antarctic ecosystems to changes in ice shelf basal melt rates. 
    more » « less
  4. Abstract Satellite‐based sensors of ocean color have become the primary tool to infer changes in surface chlorophyll, while BGC‐Argo floats are now filling the information gap at depth. Here we use BGC‐Argo data to assess depth‐resolved information on chlorophyll‐a derived from an ocean biogeochemical model constrained by the assimilation of surface ocean color remote sensing. The data‐assimilating model replicates well the general seasonality and meridional gradients in surface and depth‐resolved chlorophyll‐a inferred from the float array in the Southern Ocean. On average, the model tends to overestimate float‐based chlorophyll, particularly at times and locations of high productivity such as the beginning of the spring bloom, subtropical deep chlorophyll maxima, and non‐iron limited regions of the Southern Ocean. The highest model RMSE in the upper 50 m with respect to the float array is of 0.6 mg Chl m−3, which should allow the detection of seasonal changes in float‐based biomass (varying between 0.01 and >1 mg Chl m−3) but might hinder the identification of subtle changes in chlorophyll at narrow local scales. Both model and float profiling data show good agreement with in situ data from station ALOHA, with model estimates showing a slight accuracy edge in inferring depth‐resolved observations. Uncertainties in float bio‐optical estimates impede their use as a reliable benchmark for validation, but the general qualitative agreement between model and float data provides confidence in the ability of model to replicate biogeochemical features below the surface, where data is not directly constrained by the assimilation of satellite ocean color. 
    more » « less
  5. null (Ed.)
    The genus Phaeocystis is distributed globally and has considerable ecological, biogeochemical, and societal impacts. Understanding its distribution, growth and ecological impacts has been limited by lack of extensive observations on appropriate scales. In 2018, we investigated the biological dynamics of the New England continental shelf and encountered a substantial bloom of Phaeocystis pouchetii. Based on satellite imagery during January through April, the bloom extended over broad expanses of the shelf; furthermore, our observations demonstrated that it reached high biomass levels, with maximum chlorophyll concentrations exceeding 16 μg L−1 and particulate organic carbon levels > 95 μmol L−1. Initially, the bloom was largely confined to waters with temperatures <6°C, which in turn were mostly restricted to shallow areas near the coast. As the bloom progressed, it appeared to sink into the bottom boundary layer; however, enough light and nutrients were available for growth. The bloom was highly productive (net community production integrated through the mixed layer from stations within the bloom averaged 1.16 g C m−2 d−1) and reduced nutrient concentrations considerably. Long-term coastal observations suggest that Phaeocystis blooms occur sporadically in spring on Nantucket Shoals and presumably expand onto the continental shelf. Based on the distribution of Phaeocystis during our study, we suggest that it can have a significant impact on the overall productivity and ecology of the New England shelf during the winter/spring transition. 
    more » « less