skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling agent-based simulation and spatial optimization models to understand spatially complex and co-evolutionary behavior of cocaine trafficking networks and counterdrug interdiction
Despite more than 40 years of counterdrug interdiction efforts in the Western Hemisphere, cocaine trafficking, or ‘narco-trafficking’, networks continue to evolve and increase their global reach. Counterdrug interdiction continues to fall short of performance targets due to the adaptability of narco-trafficking networks and spatially complex constraints on interdiction operations (e.g., resources, jurisdictional). Due to these dynamics, current modeling approaches offer limited strategic insights into time-varying, spatially optimal allocation of counterdrug interdiction assets. This study presents coupled agent-based and spatial optimization models to investigate the co-evolution of counterdrug interdiction deployment and narco-trafficking networks’ adaptive responses. Increased spatially optimized interdiction assets were found to increase seizure volumes. However, the value per seized shipment concurrently decreased and the number of active nodes increased or was unchanged. Narco-trafficking networks adaptively responded to increased interdiction pressure by spatially diversifying routes and dispersing shipment volumes. Thus, increased interdiction pressure had the unintended effect of expanding the spatial footprint of narcotrafficking networks. This coupled modeling approach enabled the study of narco-trafficking network evolution while being subjected to varying interdiction pressure as a spatially complex adaptive system. Capturing such co-evolution dynamics is essential for simulating traffickers’ realistic adaptive responses to a wide range of interdiction scenarios.  more » « less
Award ID(s):
1837698 2039975
PAR ID:
10358669
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IISE Transactions
ISSN:
2472-5854
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Counterdrug interdiction efforts designed to seize or disrupt cocaine shipments between South American source zones and US markets remain a core US “supply side” drug policy and national security strategy. However, despite a long history of US-led interdiction efforts in the Western Hemisphere, cocaine movements to the United States through Central America, or “narco-trafficking,” continue to rise. Here, we developed a spatially explicit agent-based model (ABM), called “NarcoLogic,” of narco-trafficker operational decision making in response to interdiction forces to investigate the root causes of interdiction ineffectiveness across space and time. The central premise tested was that spatial proliferation and resiliency of narco-trafficking are not a consequence of ineffective interdiction, but rather part and natural consequence of interdiction itself. Model development relied on multiple theoretical perspectives, empirical studies, media reports, and the authors’ own years of field research in the region. Parameterization and validation used the best available, authoritative data source for illicit cocaine flows. Despite inherently biased, unreliable, and/or incomplete data of a clandestine phenomenon, the model compellingly reproduced the “cat-and-mouse” dynamic between narco-traffickers and interdiction forces others have qualitatively described. The model produced qualitatively accurate and quantitatively realistic spatial and temporal patterns of cocaine trafficking in response to interdiction events. The NarcoLogic model offers a much-needed, evidence-based tool for the robust assessment of different drug policy scenarios, and their likely impact on trafficker behavior and the many collateral damages associated with the militarized war on drugs. 
    more » « less
  2. We consider a new class of multi-period network interdiction problems, where interdiction and restructuring decisions are decided upon before the network is operated and implemented throughout the time horizon.We discuss how we apply this new problem to disrupting domestic sex trafficking networks, and introduce a variant where a second cooperating attacker has the ability to interdict victims and prevent the recruitment of prospective victims. This problem is modeled as a bilevel mixed integer linear program (BMILP), and is solved using column-and-constraint generation with partial information. We also simplify the BMILP when all interdictions are implemented before the network is operated. Modeling-based augmentations are proposed to significantly improve the solution time in a majority of instances tested. We apply our method to synthetic domestic sex trafficking networks, and discuss policy implications from our model. In particular, we show how preventing the recruitment of prospective victims may be as essential to disrupting sex trafficking as interdicting existing participants. 
    more » « less
  3. Abstract Long‐standing federal drug‐control policy aims to reduce the flow of narcotics into the USA, in part by intercepting cocaine shipments en route from South American production regions to North American consumer markets. Drug interdiction efforts operate over a large geographic area, containing complex drug trafficking networks in a dynamic environment. The extant interdiction models in the operations research and location science literature do not realistically model the objectives of and constraints on the interdiction forces, and therefore counterdrug organizations do not employ those models in their decision‐making processes. This article presents three new models built on the maximal covering location problem (MCLP): the maximal covering location problem for interdiction (MCLP‐I), multiple‐demand maximal covering location problem (MD‐MCLP), and multiple‐type maximal covering location problem (MT‐MCLP). These are novel formulations that permit multiple types of demands and facilities to be covered, and the utility of these formulations is demonstrated in the context of counterdrug operations. Optimal interdiction locations are determined within the geography of the Central American transit zone, using a coupled GIS and optimization framework. The results identify the optimal interdiction locations for known or estimated drug shipments and can constrain those optimal locations by differentiating among drug traffickers, the types of interdiction resources, and agency jurisdictions. This research both demonstrates the flexibility in designing alternative interdiction scenarios and presents novel covering models that may be extended to other application areas and operational contexts. 
    more » « less
  4. Illicit Wildlife Trade (IWT) is a serious global crime that negatively impacts biodiversity, human health, national security, and economic development. Many flora and fauna are trafficked in different product forms. We investigate a network interdiction problem for wildlife trafficking and introduce a new model to tackle key challenges associated with IWT. Our model captures the interdiction problem faced by law enforcement impeding IWT on flight networks, though it can be extended to other types of transportation networks. We incorporate vital issues unique to IWT, including the need for training and difficulty recognizing illicit wildlife products, the impact of charismatic species and geopolitical differences, and the varying amounts of information and objectives traffickers may use when choosing transit routes. Additionally, we incorporate different detection probabilities at nodes and along arcs depending on law enforcement’s interdiction and training actions. We present solutions for several key IWT supply chains using realistic data from conservation research, seizure databases, and international reports. We compare our model to two benchmark models and highlight key features of the interdiction strategy. We discuss the implications of our models for combating IWT in practice and highlight critical areas of concern for stakeholders. 
    more » « less
  5. Mutant evolution in spatially structured systems is important for a range of biological systems, but aspects of it still require further elucidation. Adding to previous work, we provide a simple derivation of growth laws that characterize the number of mutants of different relative fitness in expanding populations in spatial models of different dimensionalities. These laws are universal and independent of "microscopic" modeling details. We further study the accumulation of mutants and find that with advantageous and neutral mutants, more of them are present in spatially structured, compared to well-mixed colonies of the same size. The behavior of disadvantageous mutants is subtle: if they are disadvantageous through a reduction in division rates, the result is the same, and it is the opposite if the disadvantage is due to a death rate increase. Finally, we show that in all cases, the same results are observed in fragmented, non-spatial patch models. This suggests that the patterns observed are the consequence of population fragmentation, and not spatial restrictions per se. We provide an intuitive explanation for the complex dependence of disadvantageous mutant evolution on spatial restriction, which relies on desynchronized dynamics in different locations/patches, and plays out differently depending on whether the disadvantage is due to a lower division rate or a higher death rate. Implications for specific biological systems, such as the evolution of drug-resistant cell mutants in cancer or bacterial biofilms, are discussed. 
    more » « less