Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware able to perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility-mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 second sample analysis time, processing robotically-prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way towards a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io
more »
« less
TIMSCONVERT: a workflow to convert trapped ion mobility data to open data formats
Abstract Motivation Advances in mass spectrometry have led to the development of mass spectrometers with ion mobility spectrometry capabilities and dual-source instrumentation; however, the current software ecosystem lacks interoperability with downstream data analysis using open-source software and pipelines. Results Here, we present TIMSCONVERT, a data conversion high-throughput workflow from timsTOF Pro/fleX mass spectrometer raw data files to mzML and imzML formats that incorporates ion mobility data while maintaining compatibility with data analysis tools. We showcase several examples using data acquired across different experiments and acquisition modalities on the timsTOF fleX MS. Availability and implementation TIMSCONVERT and its documentation can be found at https://github.com/gtluu/timsconvert and is available as a standalone command-line interface tool for Windows and Linux, NextFlow workflow and online in the Global Natural Products Social (GNPS) platform. Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
- Award ID(s):
- 2128044
- PAR ID:
- 10358691
- Editor(s):
- Vitek, Olga
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- 16
- ISSN:
- 1367-4803
- Page Range / eLocation ID:
- 4046 to 4047
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vitek, Olga (Ed.)Abstract Motivation Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. Results Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA-based quantitative ubiquitylome analysis. Availability Source code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Xu, Jinbo (Ed.)Abstract Summary Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the spatial locations and full spectra of stochastically emitting fluorescent single molecules. It provides an optical platform to develop new multimolecular and functional imaging capabilities. While several open-source software suites provide subdiffraction localization of fluorescent molecules, software suites for spectroscopic analysis of sSMLM data remain unavailable. RainbowSTORM is an open-source ImageJ/FIJI plug-in for end-to-end spectroscopic analysis and visualization for sSMLM images. RainbowSTORM allows users to calibrate, preview and quantitatively analyze emission spectra acquired using different reported sSMLM system designs and fluorescent labels. Availability and implementation RainbowSTORM is a java plug-in for ImageJ (https://imagej.net)/FIJI (http://fiji.sc) freely available through: https://github.com/FOIL-NU/RainbowSTORM. RainbowSTORM has been tested with Windows and Mac operating systems and ImageJ/FIJI version 1.52. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Yann, Ponty (Ed.)Abstract Motivation Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. Availability and implementation CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. Supplementary information Supplementary data are available at Bioinformatics Online.more » « less
-
In the present work, a novel workflow for the detection of both elemental and organic constituents of the firearm discharge residue from skin swabs was developed using trapped ion mobility spectrometry coupled to mass spectrometry. The small sample size (<10 μL), high specificity and short analysis time (few min) permits the detection of inorganic residues (IGSR; inorganic gunshot residues) and organic residues (OGSR) from one sample and in a single analysis. The analytical method is based on the simultaneous extraction of inorganic and organic species assisted by the formation organometallic complexes ( e.g. , 15–5 crown ethers for the sequestering of metals and nitrate species), followed by fast, post-ionization, high resolution mobility ( R IMS ∼ 150–250) and mass separations ( R MS ∼ 20–40k) with isotopic pattern recognition. The analytical performance is illustrated as a proof of concept for the case of the simultaneous detection of Ba +2 , Pb +2 , Cu + , K + , NO 3 − , diphenylamine (DPA), ethyl centralite (EC) and 2,4 dinitrotoluene (DNT) in positive and negative nESI-TIMS-MS modes. Candidate structures are proposed and collisional cross sections are reported for all organic and organometallic species of interest.more » « less
An official website of the United States government

