Serverless Function-As-A-Service (FaaS) is an emerging cloud computing paradigm that frees application developers from infrastructure management tasks such as resource provisioning and scaling. To reduce the tail latency of functions and improve resource utilization, recent research has been focused on applying online learning algorithms such as reinforcement learning (RL) to manage resources. Compared to existing heuristics-based resource management approaches, RL-based approaches eliminate humans in the loop and avoid the painstaking generation of heuristics. In this paper, we show that the state-of-The-Art single-Agent RL algorithm (S-RL) suffers up to 4.6x higher function tail latency degradation on multi-Tenant serverless FaaS platforms and is unable to converge during training. We then propose and implement a customized multi-Agent RL algorithm based on Proximal Policy Optimization, i.e., multi-Agent PPO (MA-PPO). We show that in multi-Tenant environments, MA-PPO enables each agent to be trained until convergence and provides online performance comparable to S-RL in single-Tenant cases with less than 10% degradation. Besides, MA-PPO provides a 4.4x improvement in S-RL performance (in terms of function tail latency) in multi-Tenant cases.
more »
« less
SIMPPO: a scalable and incremental online learning framework for serverless resource management
Serverless Function-as-a-Service (FaaS) offers improved programmability for customers, yet it is not server-“less” and comes at the cost of more complex infrastructure management (e.g., resource provisioning and scheduling) for cloud providers. To maintain function service-level objectives (SLOs) and improve resource utilization efficiency, recent research has been focused on applying online learning algorithms such as reinforcement learning (RL) to manage resources. Compared to rule-based solutions with heuristics, RL-based approaches eliminate humans in the loop and avoid the painstaking generation of heuristics.
Despite the initial success of applying RL, we first show in this paper that the state-of-the-art single-agent RL algorithm (S-RL) suffers up to 4.8x higher p99 function latency degradation on multi-tenant serverless FaaS platforms compared to isolated environments and is unable to converge during training. We then design and implement a scalable and incremental multi-agent RL framework based on Proximal Policy Optimization (SIMPPO). Our experiments on widely used serverless benchmarks demonstrate that in multi-tenant environments, SIMPPO enables each RL agent to efficiently converge during training and provides online function latency performance comparable to that of S-RL trained in isolation (which we refer to as the baseline for assessing RL performance) with minor degradation (<9.2%). In addition, SIMPPO reduces the p99 function latency by 4.5x compared to S-RL in multi-tenant cases.
more »
« less
- Award ID(s):
- 2029049
- PAR ID:
- 10465146
- Date Published:
- Journal Name:
- Proceedings of the 13th ACM Symposium on Cloud Computing (SoCC 2022)
- Page Range / eLocation ID:
- 306 to 322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms.more » « less
-
Current serverless Function-as-a-Service (FaaS) platforms generally use simple, classic scheduling algorithms for distributing function invocations while ignoring FaaS characteristics such as rapid changes in resource utilization and the freeze-thaw life cycle. In this paper, we present FaaSRank, a function scheduler for serverless FaaS platforms based on information monitored from servers and functions. FaaSRank automatically learns scheduling policies through experience using reinforcement learning (RL) and neural networks supported by our novel Score-Rank-Select architecture. We implemented FaaSRank in Apache OpenWhisk, an open source FaaS platform, and evaluated performance against other baseline schedulers including OpenWhisk's default scheduler on two 13-node OpenWhisk clusters. For training and evaluation, we adapted real-world serverless workload traces provided by Microsoft Azure. For the duration of test workloads, FaaSRank sustained on average a lower number of inflight invocations 59.62 % and 70.43 % as measured on two clusters respectively. We also demonstrate the generalizability of FaaSRank for any workload. When trained using a composite of 50 episodes each for 10 distinct random workloads, FaaSRank reduced average function completion time by 23.05% compared to OpenWhisk's default scheduler.more » « less
-
Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization.more » « less
-
As Cloud's adoption surges across industries, the limitations of its default scheduler, particularly on large scales or for jobs outside of its initial design scope, have become increasingly prominent. While the default schedulers in various cloud platforms were primarily engineered to focus on simple and predictable tasks, reinforcement learning (RL)-based schedulers are attracting attention as they can predict a larger and more diverse cloud environment. Nevertheless, there are practical constraints to the use of RL. Retraining for adaptation is necessary for each new environment, and exploration taken during each training may lead to unexpected performance degradation at runtime. To address these issues, this paper presents Dejavu which combines reinforcement learning with neural networks to learn and resolve scheduling problems more effectively. To tackle the extended training time and performance degradation by unexpected explorations, we apply pretraining using Demonstrations from existing heuristics. This guides the RL agent to explore in a safe and efficient manner. Furthermore, we design a robust reward function to push Dejavu to compete with and eventually outperform, the exploited heuristics and other baselines. The experimental results demonstrate the efficacy of Dejavu, showing remarkable improvements in key metrics. Compared to the default scheduler, it boosts resource utilization by 6 % and shortens scheduling time by 3% during the scheduling period.more » « less