skip to main content


Title: The Evolution of Binaries under the Influence of Radiation-Driven Winds from a Stellar Companion
Interacting binaries are of general interest as laboratories for investigating the physics of accretion, which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar evolution processes that cannot be studied in single stars. Understanding the orbital evolution of binaries is essential in order to model the formation of compact binaries. Here we focus our attention on studying orbital evolution driven by angular momentum loss through stellar winds in massive binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our results to analytic estimates for drag and angular momentum loss. We find that, at leading order, orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to orbital velocities and large accreting companion masses result in high angular momentum loss and a shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple analytic formula that can accurately account for angular momentum losses and changes in the orbit, which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela X-1 and Cygnus X-1 as examples.  more » « less
Award ID(s):
1909203
NSF-PAR ID:
10358780
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chemically homogeneous evolution (CHE) is a promising channel for forming massive binary black holes. The enigmatic, massive Wolf–Rayet binary HD 5980 A&B has been proposed to have formed through this channel. We investigate this claim by comparing its observed parameters with CHE models. UsingMESA, we simulate grids of close massive binaries, then use a Bayesian approach to compare them with the stars’ observed orbital period, masses, luminosities, and hydrogen surface abundances. The most probable models, given the observational data, have initial periods ∼3 days, widening to the present-day ∼20 days orbit as a result of mass loss—correspondingly, they have very high initial stellar masses (≳150M). We explore variations in stellar-wind mass loss and internal mixing efficiency, and find that models assuming enhanced mass loss are greatly favored to explain HD 5980, while enhanced mixing is only slightly favored over our fiducial assumptions. Our most probable models slightly underpredict the hydrogen surface abundances. Regardless of its prior history, this system is a likely binary black hole progenitor. We model its further evolution under our fiducial and enhanced wind assumptions, finding that both stars produce black holes with masses ∼19–37M. The projected final orbit is too wide to merge within a Hubble time through gravitational waves alone. However, the system is thought to be part of a 2+2 hierarchical multiple. We speculate that secular effects with the (possible) third and fourth companions may drive the system to promptly become a gravitational-wave source.

     
    more » « less
  2. Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He  I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P  = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d  = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1  = 12.2 ± 2.2  M ⊙ and M 2  = 4.9 ± 0.5  M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He  I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage. 
    more » « less
  3. Abstract

    Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization of such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.

     
    more » « less
  4. Abstract In this paper, we continue our study on the evolution of black holes (BHs) that receive velocity kicks at the origin of their host star cluster potential. We now focus on BHs in rotating clusters that receive a range of kick velocities in different directions with respect to the rotation axis. We perform N-body simulations to calculate the trajectories of the kicked BHs and develop an analytic framework to study their motion as a function of the host cluster and the kick itself. Our simulations indicate that for a BH that is kicked outside of the cluster’s core, as its orbit decays in a rotating cluster the BH will quickly gain angular momentum as it interacts with stars with high rotational frequencies. Once the BH decays to the point where its orbital frequency equals that of local stars, its orbit will be circular and dynamical friction becomes ineffective since local stars will have low relative velocities. After circularization, the BH’s orbit decays on a longer time-scale than if the host cluster was not rotating. Hence BHs in rotating clusters will have longer orbital decay times. The time-scale for orbit circularization depends strongly on the cluster’s rotation rate and the initial kick velocity, with kicked BHs in slowly rotating clusters being able to decay into the core before circularization occurs. The implication of the circularization phase is that the probability of a BH undergoing a tidal capture event increases, possibly aiding in the formation of binaries and high-mass BHs. 
    more » « less
  5. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity. 
    more » « less