skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of Hydronium Diffusion in Poly(vinyl alcohol) Hydrogels: A Critical First Step to Describe Acid Transport for Encapsulated Bioremediation
Bioremediation of chlorinated aliphatic hydrocarbon-contaminated aquifers can be hindered by high contaminant concentrations and acids generated during remediation. Encapsulating microbes in hydrogels may provide a protective, tunable environment from inhibiting compounds; however, current approaches to formulate successful encapsulated systems rely on trial and error rather than engineering approaches because fundamental information on mass-transfer coefficients is lacking. To address this knowledge gap, hydronium ion mass-transfer rates through two commonly used hydrogel materials, poly(vinyl alcohol) and alginic acid, under two solidification methods (chemical and cryogenic) were measured. Variations in hydrogel crosslinking conditions, polymer composition, and solvent ionic strength were investigated to understand how each influenced hydronium ion diffusivity. A three-way ANOVA indicated that the ionic strength, membrane type, and crosslinking method significantly (p < 0.001) contributed to changes in hydronium ion mass transfer. Hydronium ion diffusion increased with ionic strength, counter to what is observed in aqueous-only (no polymer) solutions. Co-occurring mechanisms correlated to increased hydronium ion diffusion with ionic strength included an increased water fraction within hydrogel matrices and hydrogel contraction. Measured diffusion rates determined in this study provide first principal design information to further optimize encapsulating hydrogels for bioremediation.  more » « less
Award ID(s):
1805358
PAR ID:
10358856
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACS ES&T Engineering
ISSN:
2690-0645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Charged double network (DN) hydrogels are widely studied for their desirable mechanical strength and tunable properties. In this work, the influence of polymer concentration on microstructure and properties of agarose/polyacrylic acid DN hydrogels is studied. Agarose, the first network, is a brittle biopolymer, while polyacrylic acid (PAAc) is a weak polyelectrolyte. The microstructure, visualized in liquid environment, displays an agarose scaffold coated and interconnected by PAAc, deviating from the common assumption of an entangled double network. Importantly, the charging of PAAc in the hydrogel is regulated not only by the pH and weak polyelectrolyte effects, but also by the restricted swelling of the double network, and hence, it is an inherent regulation mechanism of charged hydrogels. The interactions between the hydrogel and the ionic environment induce microstructural changes and charging of the double network, impacting surface properties such as topography, stiffness, and adhesion, which are spatially resolved by liquid‐environment atomic force microscopy. The responsiveness of the DN hydrogels significantly depends on both polymer concentrations and ion concentrations. These findings provide insights into the responsive behavior of double network hydrogels and reveal universal mechanisms for charged hydrogels, which can guide the future development of functional soft materials. 
    more » « less
  2. Abstract A hydrogel is often fabricated from preexisting polymer chains by covalently crosslinking them into a polymer network. The crosslinks make the hydrogel swell‐resistant but brittle. This conflict is resolved here by making a hydrogel from a dough. The dough is formed by mixing long polymer chains with a small amount of water and photoinitiator. The dough is then homogenized by kneading and annealing at elevated temperatures, during which the crowded polymer chains densely entangle. The polymer chains are then sparsely crosslinked into a polymer network under an ultraviolet lamp, and submerged in water to swell to equilibrium. The resulting hydrogel is both swell‐resistant and tough. The hydrogel also has near‐perfect elasticity, high strength, high fatigue resistance, and low friction. The method is demonstrated with two widely used polymers, poly(ethylene glycol) and cellulose. These hydrogels have never been made swell‐resistant, elastic, and tough before. The method is generally applicable to synthetic and natural polymers, and is compatible with industrial processing technologies, opening doors to the development of sustainable, high‐performance hydrogels. 
    more » « less
  3. Abstract Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes. 
    more » « less
  4. The design of safe and high-performance, nanostructured, block polymer (BP) electrolytes for lithium-ion batteries requires a thorough understanding of the key parameters that govern local structure and dynamics. Yet, the interfaces between microphase-separated domains can introduce complexities in this local behavior that can be challenging to quantify. Herein, the local polymer, cation (Li+), and anion dynamics were described in salt-doped polystyrene-block-poly(oligo-oxyethylene methyl ether methacrylate) (PS-b-POEM) through a quantitative framework that considered the effects of polymer architecture, segmental mixing, chain stretching, and confinement on polymer mobility and ion transport. This framework was validated through nuclear magnetic resonance (NMR) spectroscopy measurements on solid (dry) polymer electrolyte samples. Notably, a mobility transition temperature (Tmobility) was identified through NMR spectroscopy that captured the local dynamics more accurately than the thermal glass transition temperature. Additionally, the approach quantitatively described the mobility gradient across a domain when segmental mixing effects were combined with chain stretching and confinement information, especially at higher segregation strengths – facilitating the assessment of local ion diffusion and conductivity. Spatially averaged local ion diffusion predictions quantitatively matched NMR-measured ion diffusivities in the BP samples, while spatially summed ionic conductivity predictions across a domain qualitatively captured trends in the measured ionic conductivities. 
    more » « less
  5. Abstract When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)–2 × 2 TiO6octahedra in cross‐section–a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA+), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA+after synthesis is determined to be ≈ 13.1 ± 0.1%. The TMA+is completely removed from the gels after 2 water soak cycles, resulting in the first completely inorganic, TiO2‐based hydrogels. Ion exchanging the TMA+with hydronium results in gels with relatively strong hydrogen bonds. The hydrogels' compression strengths increased linearly with 1DL colloid concentration. At a 1DL concentration of 45 g L−1, the compressive strength, at 80% deformation when acrylic acid is used, is ≈325 kPa. The strengths are ≈ 50% greater after the TMA+is removed. The removal of all residual organic components in the hydrogels, including TMA+, is confirmed by qNMR, Fourier‐transformed infrared spectroscopy (FTIR), and TGA/DSC. The 1DL phase is retained after gelation, TMA+removal, and 80% compression. 
    more » « less