skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Double Your Corners, Double Your Fun: The Doorway Camera
In a built environment, wanting to see without direct line of sight is often due to being outside a doorway. The two vertical edges of the doorway provide occlusions that can be exploited for non-line-of-sight imaging by forming corner cameras. While each corner camera can separately yield a robust 1D reconstruction, joint processing suggests novelties in both forward modeling and inversion. The resulting doorway camera provides accurate and robust 2D reconstructions of the hidden scene. This work provides a novel inversion algorithm to jointly estimate two views of change in the hidden scene, using the temporal difference between photographs acquired on the visible side of the doorway. Successful reconstruction is demonstrated in a variety of real and rendered scenarios, including different hidden scenes and lighting conditions. A Cramer-Rao bound analysis is used to demonstrate the 2D resolving power of the doorway camera over other passive acquisition strategies and to motivate the novel biangular reconstruction grid.  more » « less
Award ID(s):
1955219
PAR ID:
10359007
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Computational Imaging (ICCP)
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Non-Line-Of-Sight (NLOS) imaging aims at recovering the 3D geometry of objects that are hidden from the direct line of sight. One major challenge with this technique is the weak available multibounce signal limiting scene size, capture speed, and reconstruction quality. To overcome this obstacle, we introduce a multipixel time-of-flight non-line-of-sight imaging method combining specifically designed Single Photon Avalanche Diode (SPAD) array detectors with a fast reconstruction algorithm that captures and reconstructs live low-latency videos of non-line-of-sight scenes with natural non-retroreflective objects. We develop a model of the signal-to-noise-ratio of non-line-of-sight imaging and use it to devise a method that reconstructs the scene such that signal-to-noise-ratio, motion blur, angular resolution, and depth resolution are all independent of scene depth suggesting that reconstruction of very large scenes may be possible. 
    more » « less
  2. null (Ed.)
    Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions. 
    more » « less
  3. Light transport contains all light information between a light source and an image sensor. As an important application of light transport, dual photography has been a popular research topic, but it is challenged by long acquisition time, low signal-to-noise ratio, and the storage or processing of a large number of measurements. In this Letter, we propose a novel hardware setup that combines a flying-spot micro-electro mechanical system (MEMS) modulated projector with an event camera to implement dual photography for 3D scanning in both line-of-sight (LoS) and non-line-of-sight (NLoS) scenes with a transparent object. In particular, we achieved depth extraction from the LoS scenes and 3D reconstruction of the object in a NLoS scene using event light transport. 
    more » « less
  4. We propose a novel non-line-of-sight (NLOS) imaging framework with long-wave infrared (IR). At long-wave IR wavelengths, certain physical parameters are more favorable for high-fidelity reconstruction. In contrast to prior work in visible light NLOS, at long-wave IR wavelengths, the hidden heat source acts as a light source. This simplifies the problem to a single bounce problem. In addition, surface reflectance has a much stronger specular reflection in the long-wave IR spectrum than in the visible light spectrum. We reformulate a light transport model that leverages these favorable physical properties of long-wave IR. Specifically, we demonstrate 2D shape recovery and 3D localization of a hidden object. Furthermore, we demonstrate near real-time and robust NLOS pose estimation of a human figure, the first such demonstration, to our knowledge. 
    more » « less
  5. null (Ed.)
    We present a passive non-line-of-sight method that infers the number of people or activity of a person from the observation of a blank wall in an unknown room. Our technique analyzes complex imperceptible changes in indirect illumination in a video of the wall to reveal a signal that is correlated with motion in the hidden part of a scene. We use this signal to classify between zero, one, or two moving people, or the activity of a person in the hidden scene. We train two convolutional neural networks using data collected from 20 different scenes, and achieve an accuracy of 94% for both tasks in unseen test environments and real-time online settings. Unlike other passive non-line-of-sight methods, the technique does not rely on known occluders or controllable light sources, and generalizes to unknown rooms with no recalibration. We analyze the generalization and robustness of our method with both real and synthetic data, and study the effect of the scene parameters on the signal quality. 
    more » « less