- PAR ID:
- 10359112
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Clebsch variables provide a canonical representation of ideal flows that is, in practice, difficult to handle: while the velocity field is a function of the Clebsch variables and their gradients, constructing the Clebsch variables from the velocity field is not trivial. We introduce an extended set of Clebsch variables that circumvents this problem. We apply this method to a compressible, chemically inhomogeneous, and rotating ideal fluid in a gravity field. A second difficulty, the secular growth of canonical variables even for stationary states of stratified fluids, makes expansions of the Hamiltonian in Clebsch variables problematic. We give a canonical transformation that associates a stationary state of the canonical variables with the stationary state of the fluid; the new set of variables permits canonical approximations of the dynamics. We apply this to a compressible stratified ideal fluid with the aim to facilitate forthcoming studies of wave turbulence of internal waves.more » « less
-
We use a multiple-scale expansion to average the wave action balance equation over an ensemble of sea-surface velocity fields characteristic of the ocean mesoscale and submesoscale. Assuming that the statistical properties of the flow are stationary and homogeneous, we derive an expression for a diffusivity tensor of surface-wave action density. The small parameter in this expansion is the ratio of surface current speed to gravity wave group speed. For isotropic currents, the action diffusivity is expressed in terms of the kinetic energy spectrum of the flow. A Helmholtz decomposition of the sea-surface currents into solenoidal (vortical) and potential (divergent) components shows that, to leading order, the potential component of the surface velocity field has no effect on the diffusivity of wave action: only the vortical component of the sea-surface velocity results in diffusion of surface-wave action. We validate our analytic results for the action diffusivity by Monte Carlo ray-tracing simulations through an ensemble of stochastic velocity fields.more » « less
-
This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events.more » « less
-
null (Ed.)We develop a hybrid approach that combines the Monte Carlo (MC)method, a variational implicit-solvent model (VISM), and a binary level-set method forthe simulation of biomolecular binding in an aqueous solvent. The solvation free energy for the biomolecular complex is estimated by minimizing the VISM free-energy functional of all possible solute−solvent interfaces that are used as dielectric boundaries. This functional consists of the solute volumetric, solute−solvent interfacial, solute−solvent van der Waals interaction, and electrostatic free energy. A technique of shifting the dielectric boundary is used to accurately predict the electrostatic part of the solvation free energy.Minimizing such a functional in each MC move is made possible by our new and fast binary level-set method. This method is based on the approximation of surface area by the convolution of an indicator function with a compactly supported kernel and is implemented by simple flips of numerical grid cells locally around the solute−solvent interface. We apply our approach to the p53-MDM2 system for which the two molecules are approximated by rigid bodies. Our efficient approach captures some of the poses before the final bound state. All atom molecular dynamics simulations with most of such poses quickly reach the final bound state.Our work is a new step toward realistic simulations of biomolecular interactions. With further improvement of coarse graining and MC sampling, and combined with other models, our hybrid approach can be used to study the free-energy landscape and kinetic pathways of ligand binding to proteins.more » « less
-
Summary We develop one‐way coupling methods between a Boussinesq‐type wave model based on the discontinuous Galerkin finite element method and a free‐surface flow model based on a mesh‐free particle method to strike a balance between accuracy and computational cost. In our proposed model, computation of the wave model in the global domain is conducted first, and the nonconstant velocity profiles in the vertical direction are reproduced by using its results. Computation of the free‐surface flow is performed in a local domain included within the global domain with interface boundaries that move along the reproduced velocity field in a Lagrangian fashion. To represent the moving interfaces, we used a polygon wall boundary model for mesh‐free particle methods. Verification and validation tests of our proposed model are performed, and results obtained by the model are compared with theoretical values and experimental results to show its accuracy and applicability.