skip to main content


Title: Critical transitions in the hydrological system: early-warning signals and network analysis
Abstract. One critical challenge of studying Earth's hydroclimate system, in the face of global environmental changes, is to predict whether the system approaches a critical threshold. Here, we identified the critical transitions of hydrological processes, including precipitation and potential evapotranspiration, by analyzing their early-warning signals and system-based network structures. The statistical early-warning signals are manifest in increasing trends of autocorrelation and variance in the hydrologic system ranging from regional to global scales, prior to climate shifts in the 1970s and 1990s, in agreement with observations. We further extended the conventional statistics-based measures of early-warning signals to system-based network analysis in urban areas across the contiguous United States. The topology of an urban precipitation network features hub-periphery (clustering) and modular organization, with strong intra-regional connectivity and inter-regional gateways (teleconnection). We found that several network parameters (mean correlation coefficient, density, and clustering coefficient) gradually increased prior to the critical transition in the 1990s, signifying the enhanced synchronization among urban precipitation patterns. These topological parameters can not only serve as novel system-based early-warning signals for critical transitions in hydrological processes but also shed new light on structure–dynamic interactions in the complex hydrological system.  more » « less
Award ID(s):
2028868 1930629
PAR ID:
10359131
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
26
Issue:
7
ISSN:
1607-7938
Page Range / eLocation ID:
1845 to 1856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Critical transitions of the state variable (temperature) in dynamic climate systems often lead to catastrophic consequence, whereas the effort to reverse the transitions usually lags behind. However, these transitions are characterized by the slowing down of recovery from perturbations, carrying early‐warning signals that can be used to predict system bifurcation. In this study, we employ the conceptual framework of pitchfork bifurcation and analyze the early‐warning signals in temperature time series for critical slowing down prior to both the early 20th century global warming and heat waves. We also investigate the urban signature in these heat waves. The emergence of early‐warning signals before heat waves provides new insights into the underlying mechanisms (e.g., possible feedback via land‐atmosphere interactions). In particular, given the increasing frequency and intensity of heat extremes, the results will facilitate the design of countermeasures to reserve the tipping and restore the resilience of climate systems.

     
    more » « less
  2. Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts. 
    more » « less
  3. Successfully anticipating sudden major changes in complex systems is a practical concern. Such complex systems often form a heterogeneous network, which may show multi-stage transitions in which some nodes experience a regime shift earlier than others as an environment gradually changes. Here we investigate early warning signals for networked systems undergoing a multi-stage transition. We found that knowledge of both the ongoing multi-stage transition and network structure enables us to calculate effective early warning signals for multi-stage transitions. Furthermore, we found that small subsets of nodes could anticipate transitions as well as or even better than using all the nodes. Even if we fix the network and dynamical system, no single best subset of nodes provides good early warning signals, and a good choice of sentinel nodes depends on the tipping direction and the current stage of the dynamics within a multi-stage transition, which we systematically characterize.

     
    more » « less
  4. We present a heuristic argument for the propensity of Topological Data Analysis (TDA) to detect early warning signals of critical transitions in financial time series. Our argument is based on the Log-Periodic Power Law Singularity (LPPLS) model, which characterizes financial bubbles as super-exponential growth (or decay) of an asset price superimposed with oscillations increasing in frequency and decreasing in amplitude when approaching a critical transition (tipping point). We show that whenever the LPPLS model is fitting with the data, TDA generates early warning signals. As an application, we illustrate this approach on a sample of positive and negative bubbles in the Bitcoin historical price. 
    more » « less
  5. The Mantaro River Basin is one of the most important regions in the central Peruvian Andes in terms of hydropower generation and agricultural production. Contributions to better understanding of the climate and hydrological dynamics are vital for this region and constitute key information to support regional water security and socioeconomic resilience. This study presents eight years of monthly isotopic precipitation information (δ18O, Dxs) collected in the Mantaro River Basin. The isotopic signals were evaluated in terms of moisture sources, including local and regional climatic parameters, to interpret their variability at monthly and interannual timescales. It is proposed that the degree of rainout upstream and the transport history of air masses, also related to regional atmospheric features, are the main factors influencing the δ18O variability. Moreover, significant correlations with precipitation amount and relative humidity imply that local processes in this region of the Andes also exert important control over isotopic variability. Two extreme regional climate events (the 2010 drought and the 2017 coastal El Niño) were evaluated to determine how regional atmospheric circulation affects the rainfall isotope variability. Based on these results, recommendations for hydroclimate studies and paleoclimate reconstructions are proposed in the context of the Mantaro River Basin. This study intends to encourage new applications considering geochemical evidence for hydrological studies over the central Andean region. 
    more » « less