skip to main content


This content will become publicly available on January 1, 2025

Title: Why topological data analysis detects financial bubbles?
We present a heuristic argument for the propensity of Topological Data Analysis (TDA) to detect early warning signals of critical transitions in financial time series. Our argument is based on the Log-Periodic Power Law Singularity (LPPLS) model, which characterizes financial bubbles as super-exponential growth (or decay) of an asset price superimposed with oscillations increasing in frequency and decreasing in amplitude when approaching a critical transition (tipping point). We show that whenever the LPPLS model is fitting with the data, TDA generates early warning signals. As an application, we illustrate this approach on a sample of positive and negative bubbles in the Bitcoin historical price.  more » « less
Award ID(s):
2307718
PAR ID:
10519246
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Communications in Nonlinear Science and Numerical Simulation
Volume:
128
Issue:
C
ISSN:
1007-5704
Page Range / eLocation ID:
107665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts. 
    more » « less
  2. Abstract. One critical challenge of studying Earth's hydroclimate system, in the face of global environmental changes, is to predict whether the system approaches a critical threshold. Here, we identified the critical transitions of hydrological processes, including precipitation and potential evapotranspiration, by analyzing their early-warning signals and system-based network structures. The statistical early-warning signals are manifest in increasing trends of autocorrelation and variance in the hydrologic system ranging from regional to global scales, prior to climate shifts in the 1970s and 1990s, in agreement with observations. We further extended the conventional statistics-based measures of early-warning signals to system-based network analysis in urban areas across the contiguous United States. The topology of an urban precipitation network features hub-periphery (clustering) and modular organization, with strong intra-regional connectivity and inter-regional gateways (teleconnection). We found that several network parameters (mean correlation coefficient, density, and clustering coefficient) gradually increased prior to the critical transition in the 1990s, signifying the enhanced synchronization among urban precipitation patterns. These topological parameters can not only serve as novel system-based early-warning signals for critical transitions in hydrological processes but also shed new light on structure–dynamic interactions in the complex hydrological system. 
    more » « less
  3. Abstract

    Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.

     
    more » « less
  4. Abstract

    Price bubbles in multiple assets are sometimes nearly coincident in occurrence. Such near-coincidence is strongly suggestive of co-movement in the associated asset prices and is likely driven by certain factors that are latent in the financial or economic system with common effects across several markets. Can we detect the presence of such common factors at the early stages of their emergence? To answer this question, we build a factor model that includes I(1), mildly explosive, and stationary factors to capture normal, exuberant, and collapsing phases in such phenomena. The I(1) factor models the primary driving force of market fundamentals. The explosive and stationary factors model latent forces that underlie the formation and destruction of asset price bubbles, which typically exist only for subperiods of the sample. The article provides an algorithm for testing the presence of and date-stamping the origination and termination of price bubbles determined by latent factors in a large-dimensional system embodying many markets. Asymptotics of the bubble test statistic are given under the null of no common bubbles and the alternative of a common bubble across these markets. We prove the consistency of a factor bubble detection process for the origination and termination dates of the common bubble. Simulations show good finite sample performance of the testing algorithm in terms of its successful detection rates. Our methods are applied to real estate markets covering eighty-nine major cities in China over the period January 2005 to December 2008. Results suggest the presence of a common bubble episode in what are known as China’s Tier 1 and Tier 2 cities from June 2007 to February 2008. There is also a common bubble episode in Tier 3 cities but of shorter duration.

     
    more » « less
  5. Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application’s focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.

     
    more » « less