skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Pseudomorphic growth of thick Al 0.6 Ga 0.4 N epilayers on AlN substrates
We report on the absence of strain relaxation mechanism in Al 0.6 Ga 0.4 N epilayers grown on (0001) AlN substrates for thickness as large as 3.5  μm, three-orders of magnitude beyond the Matthews–Blakeslee critical thickness for the formation of misfit dislocations (MDs). A steady-state compressive stress of 3–4 GPa was observed throughout the AlGaN growth leading to a large lattice bow (a radius of curvature of 0.5 m −1 ) for the thickest sample. Despite the large lattice mismatch-induced strain energy, the epilayers exhibited a smooth and crack-free surface morphology. These results point to the presence of a large barrier for nucleation of MDs in Al-rich AlGaN epilayers. Compositionally graded AlGaN layers were investigated as potential strain relief layers by the intentional introduction of MDs. While the graded layers abetted MD formation, the inadequate length of these MDs correlated with insignificant strain relaxation. This study emphasizes the importance of developing strain management strategies for the implementation of the single-crystal AlN substrate platform for III-nitride deep-UV optoelectronics and power electronics.  more » « less
Award ID(s):
1916800 1653383
PAR ID:
10359173
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
120
Issue:
20
ISSN:
0003-6951
Page Range / eLocation ID:
202105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3  μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9  μm are 850 and 1500 V, respectively. 
    more » « less
  3. Polarization-induced carriers play an important role in achieving high electrical conductivity in ultrawide bandgap semiconductor AlGaN, which is essential for various applications ranging from radio frequency and power electronics to deep UV photonics. Despite significant scientific and technological interest, studies on polarization-induced carriers in N-polar AlGaN are rare. We report the observation and properties of polarization-induced two-dimensional electron gases (2DEGs) in N-polar AlGaN/AlN heterostructures on single-crystal AlN substrates by systematically varying the Al content in the 8 nm top layers from x = 0 to x = 0.6, spanning energy bandgaps from 3.56 to 4.77 eV. The 2DEG density drops monotonically with increasing Al content, from 3.8 × 1013/cm2 in the GaN channel, down to no measurable conductivity for x = 0.6. Alloy scattering limits the 2DEG mobility to below 50 cm2/V s for x = 0.49. These results provide valuable insights for designing N-polar AlGaN channel high electron mobility transistors on AlN for extreme electronics at high voltages and high temperatures, and for UV photonic devices.

     
    more » « less
  4. AlN Schottky barrier diodes with low ideality factor (<1.2), low differential ON-resistance (<0.6 mΩ cm2), high current density (>5 kA cm−2), and high breakdown voltage (680 V) are reported. The device structure consisted of a two-layer, quasi-vertical design with a lightly doped AlN drift layer and a highly doped Al0.75Ga0.25N ohmic contact layer grown on AlN substrates. A combination of simulation, current–voltage measurements, and impedance spectroscopy analysis revealed that the AlN/AlGaN interface introduces a parasitic electron barrier due to the conduction band offset between the two materials. This barrier was found to limit the forward current in fabricated diodes. Further, we show that introducing a compositionally-graded layer between the AlN and the AlGaN reduces the interfacial barrier and increases the forward current density of fabricated diodes by a factor of 104.

     
    more » « less
  5. Abstract

    Aluminum nitride is a promising substrate material for AlGaN‐based UV‐LED. In order to develop a robust growth processing route for AlN single crystals, fundamental studies of solution growth experiments using Ni‐Al alloy melts as a new solution system were performed. Al can be stably kept in solution the Ni‐Al liquid even at high temperature; in addition, the driving force of the AlN formation reaction from solution can be controlled by solution composition and temperature. To investigate AlN crystal growth behavior we developed an in situ observation system using an electromagnetic levitation technique. AlN formation behavior, including nucleation and growth, was quantitatively analyzed by an image processing pipeline. The nucleation rate of AlN decreased with increasing growth temperature and decreasing aluminum composition. In addition, hexagonal c‐axis oriented AlN crystal successfully grew on the levitated Ni‐40 mol%Al droplet reacted at low driving force (1960 K), on the other hand, AlN crystal with dendritic morphology appeared on the sample with higher driving force (Ni‐50 mol%Al, 1960 K). Thus, the nucleation rate and crystal morphology were dominated by the driving force of the AlN formation reaction.

     
    more » « less