This paper presents an integrated motion planning system for autonomous vehicle (AV) parking in the presence of other moving vehicles. The proposed system includes 1) a hybrid environment predictor that predicts the motions of the surrounding vehicles and 2) a strategic motion planner that reacts to the predictions. The hybrid environment predictor performs short-term predictions via an extended Kalman filter and an adaptive observer. It also combines short-term predictions with a driver behavior cost-map to make long-term predictions. The strategic motion planner comprises 1) a model predictive control-based safety controller for trajectory tracking; 2) a search-based retreating planner for finding an evasion path in an emergency; 3) an optimization-based repairing planner for planning a new path when the original path is invalidated. Simulation validation demonstrates the effectiveness of the proposed method in terms of initial planning, motion prediction, safe tracking, retreating in an emergency, and trajectory repairing.
more »
« less
On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles
Trajectory prediction is a critical component for autonomous vehicles (AVs) to perform safe planning and navigation. However, few studies have analyzed the adversarial robustness of trajectory prediction or investigated whether the worst-case prediction can still lead to safe planning. To bridge this gap, we study the adversarial robustness of trajectory prediction models by proposing a new adversarial attack that perturbs normal vehicle trajectories to maximize the prediction error. Our experiments on three models and three datasets show that the adversarial prediction increases the prediction error by more than 150%. Our case studies show that if an adversary drives a vehicle close to the target AV following the adversarial trajectory, the AV may make an inaccurate prediction and even make unsafe driving decisions. We also explore possible mitigation techniques via data augmentation and trajectory smoothing.
more »
« less
- PAR ID:
- 10359466
- Date Published:
- Journal Name:
- IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work studies the adversarial robustness of parametric functions composed of a linear predic-tor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL),an extension of local Lipschitz continuity that better captures the stability and reduced effectivedimensionality of predictors upon local perturbations. SLL functions preserve a certain degree ofstructure, given by the sparsity pattern in the representation map, and include several popular hy-pothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLUnetworks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificateon the minimal energy of an adversarial example, as well as tighter data-dependent nonuniformbounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.more » « less
-
Deep Neural Networks (DNNs) have been widely applied in autonomous systems such as self-driving vehicles. Recently, DNN testing has been intensively studied to automatically generate adversarial examples, which inject small-magnitude perturbations into inputs to test DNNs under extreme situations. While existing testing techniques prove to be effective, particularly for autonomous driving, they mostly focus on generating digital adversarial perturbations, e.g., changing image pixels, which may never happen in the physical world. Thus, there is a critical missing piece in the literature on autonomous driving testing: understanding and exploiting both digital and physical adversarial perturbation generation for impacting steering decisions. In this paper, we propose a systematic physical-world testing approach, namely DeepBillboard, targeting at a quite common and practical driving scenario: drive-by billboards. DeepBillboard is capable of generating a robust and resilient printable adversarial billboard test, which works under dynamic changing driving conditions including viewing angle, distance, and lighting. The objective is to maximize the possibility, degree, and duration of the steering-angle errors of an autonomous vehicle driving by our generated adversarial billboard. We have extensively evaluated the efficacy and robustness of DeepBillboard by conducting both experiments with digital perturbations and physical-world case studies. The digital experimental results show that DeepBillboard is effective for various steering models and scenes. Furthermore, the physical case studies demonstrate that DeepBillboard is sufficiently robust and resilient for generating physical-world adversarial billboard tests for real-world driving under various weather conditions, being able to mislead the average steering angle error up to 26.44 degrees. To the best of our knowledge, this is the first study demonstrating the possibility of generating realistic and continuous physical-world tests for practical autonomous driving systems; moreover, DeepBillboard can be directly generalized to a variety of other physical entities/surfaces along the curbside, e.g., a graffiti painted on a wall.more » « less
-
We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range.more » « less
-
Trajectory prediction forecasts nearby agents’ moves based on their historical trajectories. Accurate trajectory prediction (or prediction in short) is crucial for autonomous vehicles (AVs). Existing attacks compromise the prediction model of a victim AV by directly manipulating the historical trajectory of an attacker AV, which has limited real-world applicability. This paper, for the first time, explores an indirect attack approach that induces prediction errors via attacks against the perception module of a victim AV. Although it has been shown that physically realizable attacks against LiDAR-based perception are possible by placing a few objects at strategic locations, it is still an open challenge to find an object location from the vast search space in order to launch effective attacks against prediction under varying victim AV velocities. Through analysis, we observe that a prediction model is prone to an attack focusing on a single point in the scene. Consequently, we propose a novel two-stage attack framework to realize the single-point attack. The first stage of predictionside attack efficiently identifies, guided by the distribution of detection results under object-based attacks against perception, the state perturbations for the prediction model that are effective and velocity-insensitive. In the second stage of location matching, we match the feasible object locations with the found state perturbations. Our evaluation using a public autonomous driving dataset shows that our attack causes a collision rate of up to 63% and various hazardous responses of the victim AV. The effectiveness of our attack is also demonstrated on a real testbed car 1. To the best of our knowledge, this study is the first security analysis spanning from LiDARbased perception to prediction in autonomous driving, leading to a realistic attack on prediction. To counteract the proposed attack, potential defenses are discussed.more » « less