Motivated by the need to interpret the results from a combined use of
White matter (WM) characterization is challenging due to its anisotropic and inhomogeneous microstructure that necessitates multiscale and multi-modality measurements. Shear elastography is one such modality that requires the accurate interpretation of 3D shear strain measurements, which hinge on developing appropriate constitutive tissue models. Finite element methods enable the development of such models by simulating the shear response of representative elemental volumes (REV). We have developed triphasic (axon, myelin, glia), 2D REVs to simulate the influence of the intrinsic viscoelastic property and volume fraction of each phase. This work constitutes the extension of 2D- to 3D-REVs, focusing on the effect of the intrinsic material properties and their 3D representation on the viscoelastic response of the tissue. By lumping the axon and myelin phases, a flexible 3D REV generation and analysis routine is then developed to allow for shear homogenization in both the axial and transverse directions. The 2D and 3D models agree on stress distribution and total deformation when 2D cross-sectional snapshots are compared. We also conclude that the ratio of transverse to axial transverse modulus is larger than one when axon fibers are stiffer than the glial phase.
more » « less- NSF-PAR ID:
- 10359678
- Date Published:
- Journal Name:
- ASME International Mechanical Engineering Congress and Exposition (IMECE)
- Volume:
- V005T05A039
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract in vivo brain Magnetic Resonance Elastography (MRE) and Diffusion Tensor Imaging (DTI), we developed a computational framework to study the sensitivity of single-frequency MRE and DTI metrics to white matter microstructure and cell-level mechanical and diffusional properties. White matter was modeled as a triphasic unidirectional composite, consisting of parallel cylindrical inclusions (axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells plus extracellular matrix). Only 2D mechanics and diffusion in the transverse plane (perpendicular to the axon direction) was considered, and homogenized (effective) properties were derived for a periodic domain containing a single axon. The numerical solutions of the MRE problem were performed with ABAQUS and by employing a sophisticated boundary-conforming grid generation scheme. Based on the linear viscoelastic response to harmonic shear excitation and steady-state diffusion in the transverse plane, a systematic sensitivity analysis of MRE metrics (effective transverse shear storage and loss moduli) and DTI metric (effective radial diffusivity) was performed for a wide range of microstructural and intrinsic (phase-based) physical properties. The microstructural properties considered were fiber volume fraction, and the myelin sheath/axon diameter ratio. The MRE and DTI metrics are very sensitive to the fiber volume fraction, and the intrinsic viscoelastic moduli of the glial phase. The MRE metrics are nonlinear functions of the fiber volume fraction, but the effective diffusion coefficient varies linearly with it. Finally, the transverse metrics of both MRE and DTI are insensitive to the axon diameter in steady state. Our results are consistent with the limited anisotropic MRE and co-registered DTI measurements, mainly in thecorpus callosum , available in the literature. We conclude that isotropic MRE and DTI constitutive models are good approximations for myelinated white matter in the transverse plane. The unidirectional composite model presented here is used for the first time to model harmonic shear stress under MRE-relevant frequency on the cell level. This model can be extended to 3D in order to inform the solution of the inverse problem in MRE, establish the biological basis of MRE metrics, and integrate MRE/DTI with other modalities towards increasing the specificity of neuroimaging. -
Material properties of brain white matter (BWM) show high anisotropy due to the complicated internal three-dimensional microstructure and variant interaction between heterogeneous brain-tissue (axon, myelin, and glia). From our previous study, finite element methods were used to merge micro-scale Representative Volume Elements (RVE) with orthotropic frequency domain viscoelasticity to an integral macro-scale BWM. Quantification of the micro-scale RVE with anisotropic frequency domain viscoelasticity is the core challenge in this study.more » « less
The RVE behavior is expressed by a viscoelastic constitutive material model, in which the frequency-related viscoelastic properties are imparted as storage modulus and loss modulus for the composite comprised of axonal fibers and extracellular glia. Using finite elements to build RVEs with anisotropic frequency domain viscoelastic material properties is computationally very consuming and resource-draining. Additionally, it is very challenging to build every single RVE using finite elements since the architecture of each RVE is arbitrary in an infinite data set. The architecture information encoded in the voxelized location is employed as input data and is consequently incorporated into a deep 3D convolution neural network (CNN) model that cross-references the RVEs’ material properties (output data). The output data (RVEs’ material properties) is calculated in parallel using an in-house developed finite element method, which models RVE samples of axon-myelin-glia composites. This novel combination of the CNN-RVE method achieved a dramatic reduction in the computation time compared with directly using finite element methods currently present in the literature.
-
Abstract Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions.more » « less
-
Abstract Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s−1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury.more » « less
-
null (Ed.)Healthy aging involves local variations in viscoelastic shear properties of the brain. We employ high-resolution, multi-excitation MRE and a novel anisotropic inversion scheme (iTI) to extract local shear anisotropic moduli in vivo. The ratio of transverse to axial moduli, a new MRE metric, remains greater than 1 along the splenium, body and genu regions of the corpus callosum for both young and old subjects. This metric peaks in the body region and decreases with age throughout the corpus callosum.more » « less