skip to main content


Title: Focal Mechanisms of Intraslab Earthquakes: Insights From Pseudotachylytes in Mantle Units
Abstract

Devastating seismic events occur mainly in subduction zones, and a significant percentage of them are intraslab earthquakes. The geologic record of these events holds valuable information that needs to be investigated for a comprehensive seismic risk assessment. Here we investigate pseudotachylytes formed in oceanic peridotites and that are interpreted to result from intraslab seismic rupture. Each vein has recorded the seismic slip direction and slip sense of a single coseismic shear‐heating event. The well‐preserved exposures, showing individual veins up to 7 m in length and about 3 cm in width, of Cima di Gratera, in the Schistes Lustrés ophiolitic units of Corsica, offer unparalleled opportunities to investigate intraslab rupture kinematics in mantle rocks. The principal ferromagnetic phase in these rocks is a Ti‐poor magnetite. We use the anisotropy of magnetic susceptibility (AMS) recorded in pseudotachylyte generation veins (bulk susceptibilities range from 600 to 20,000 × 10−6[SI] volume, withP′ ranging from 1.05 to 2.5) to reconstruct the co‐seismic deformation parameters, that is, fault plane attitude, direction and sense of slip. These new results, internally consistent at the vein level, span across oblate and prolate symmetries and reveal that seismic deformation recorded in these veins was kinematically diverse and included mostly normal mechanisms acting along the same subduction zone. In addition, our investigations show that the magnetic fabric of peridotite‐hosted pseudotachylytes provides key information bearing on the complex dynamics of frictional melts at a unprecedently high spatial resolution.

 
more » « less
Award ID(s):
1642268
NSF-PAR ID:
10359835
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater inNWAlberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine‐Ca/Fe majorite‐rich garnet with a density of 4.2 g cm−3. The shock‐produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine‐grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high‐pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.

     
    more » « less
  2. Abstract

    Shear‐wave splitting observations can provide insight into mantle flow, due to the link between the deformation of mantle rocks and their direction‐dependent seismic wave velocities. We identify anisotropy in the Cook Inlet segment of the Alaska subduction zone by analyzing splitting parameters of S waves from local intraslab earthquakes between 50 and 200 km depths, recorded from 2015–2017 and emphasizing stations from the Southern Alaska Lithosphere and Mantle Observation Network experiment. We classify 678 high‐quality local shear‐wave splitting observations into four regions, from northwest to southeast: (L1b) splitting measurements parallel to Pacific plate motion, (L1a) arc‐perpendicular splitting pattern, (L2) sharp transition to arc‐parallel splitting, and (L3) splitting parallel to Pacific plate motion. Forward modeling of splitting from various mantle fabrics shows that no one simple model fully explains the observed splitting patterns. An A‐type olivine fabric with fast direction dipping 45° to the northwest (300°)—aligned with the dipping slab—predicts fast directions that fit L1a observations well, but not L2. The inability of the forward model fabrics to fit all the observed splitting patterns suggests that the anisotropy variations are not due to variable ray angles, but require distinct differences in the anisotropy regime below the arc, forearc, and subducting plate.

     
    more » « less
  3. Abstract

    Postseismic deformation following subduction earthquakes includes the combined effects of afterslip surrounding the coseismic rupture areas and viscoelastic relaxation in the asthenosphere and provides unique and valuable information for understanding the rheological structure. Because the two postseismic mechanisms are usually spatiotemporally intertwined, we developed an integrated model combining their contributions, based on 5 years of observations following the 2016 Pedernales (Ecuador) earthquake. The results show that the early, near‐field postseismic deformation is dominated by afterslip, both updip and downdip of the coseismic rupture, and requires heterogeneous interface frictional properties. Viscoelastic relaxation contributes more to far‐field displacements at later time periods. The best‐fit integrated model favors a 45‐km thick lithosphere overlying a Burgers body viscoelastic asthenosphere with a Maxwell viscosity of 3 × 1019 Pa s (0.9–5 × 1019 Pa s at 95% confidence), assuming the Kelvin viscosity equal to 10% of that value. In addition to the postseismic afterslip, the coastal displacement of sites north and south of the rupture clearly require extra slip in the plate motion direction due to slow slip events that may be triggered by the coseismic stress changes (CSC) but are not purely driven by the CSC. Spatially variable afterslip following the Pedernales event, combined with the SSEs during the interseismic period, demonstrate that spatial frictional variability persists throughout the whole earthquake cycle. The interaction of adjacent fault patches with heterogeneous properties may contribute to the clustered large earthquakes in this area.

     
    more » « less
  4. Abstract

    The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.

     
    more » « less
  5. Abstract

    Spontaneous rupture simulations along geometrically rough faults have been shown to produce realistic far‐field spectra and comparable fits with ground motion metrics such as spectral accelerations and peak motions from Ground Motion Prediction Equations (GMPEs), but they are too computationally demanding for use with physics‐based probabilistic seismic hazard analysis efforts. Here, we present our implementation of a kinematic rupture generator that matches the characteristics of, at least in a statistical sense, rough‐fault spontaneous rupture models. To this end, we analyze ~100 dynamic rupture simulations on strike‐slip faults withMwranging from 6.4 to 7.2. We find that our dynamic simulations follow empirical scaling relationships for strike‐slip events and provide source spectra comparable to a source model withω−2decay. To define our kinematic source model, we use a regularized Yoffe function parameterized in terms of slip, peak‐time, rise‐time, and rupture initiation time. These parameters are defined through empirical relationships with random fields whose one‐ and two‐point statistics are derived from the dynamic rupture simulations. Our rupture generator reproduces Next Generation Attenuation (NGA) West2 GMPE medians and intraevent standard deviations of spectral accelerations with periods as short as 0.2 s for ensembles of ground motion simulations. Our rupture generator produces kinematic source models forM6.4–7.2 strike‐slip scenarios that can be used in broadband physics‐based probabilistic seismic hazard efforts or to supplement data in areas of limited observations for the development of future GMPEs.

     
    more » « less