skip to main content


Title: Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High‐Entropy Oxides
Abstract

Memristors have emerged as transformative devices to enable neuromorphic and in‐memory computing, where success requires the identification and development of materials that can overcome challenges in retention and device variability. Here, high‐entropy oxide composed of Zr, Hf, Nb, Ta, Mo, and W oxides is first demonstrated as a switching material for valence change memory. This multielement oxide material provides uniform distribution and higher concentration of oxygen vacancies, limiting the stochastic behavior in resistive switching. (Zr, Hf, Nb, Ta, Mo, W) high‐entropy‐oxide‐based memristors manifest the “cocktail effect,” exhibiting comparable retention with HfO2‐ or Ta2O5‐based memristors while also demonstrating the gradual conductance modulation observed in WO3‐based memristors. The electrical characterization of these high‐entropy‐oxide‐based memristors demonstrates forming‐free operation, low device and cycle variability, gradual conductance modulation, 6‐bit operation, and long retention which are promising for neuromorphic applications.

 
more » « less
Award ID(s):
1810119
NSF-PAR ID:
10359951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
7
Issue:
5
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microwave-induced plasma was used to anneal precursor powders containing five metal oxides with carbon and boron carbide as reducing agents, resulting in high entropy boride ceramics. Measurements of hardness, phase structure, and oxidation resistance were investigated. Plasma annealing for 45 min in the range of 1500–2000 °C led to the formation of predominantly single-phase (Hf, Zr, Ti, Ta, Mo)B2 or (Hf, Zr, Nb, Ta, Mo)B2 hexagonal structures characteristic of high entropy borides. Oxidation resistance for these borides was improved by as much as a factor of ten when compared to conventional commercial diborides. Vickers and nanoindentation hardness measurements show the indentation size effect and were found to be as much as 50% higher than that reported for the same high entropy boride configuration made by other methods, with average values reaching up to 38 GPa (for the highest Vickers load of 200 gf). Density functional theory calculations with a partial occupation method showed that (Hf, Zr, Ti, Ta, Mo)B2 has a higher hardness but a lower entropy forming ability compared to (Hf, Zr, Nb, Ta, Mo)B2, which agrees with the experiments. Overall, these results indicate the strong potential of using microwave-induced plasma as a novel approach for synthesizing high entropy borides. 
    more » « less
  2. Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration. 
    more » « less
  3. Interface‐type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament‐type (FT) devices for neuromorphic computing because of their uniform, filament‐free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface‐dominated memristive device is demonstrated using a simple Au/Nb‐doped SrTiO3(Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface‐controlled RS, the proposed device shows low device‐to‐device, cell‐to‐cell, and cycle‐to‐cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next‐generation neuromorphic computing.

     
    more » « less
  4. Abstract

    A highly reliable memristive device based on tantalum‐doped silicon oxide is reported, which exhibits high uniformity, robust endurance (≈1 × 109cycles), fast switching speed, long retention, and analog conductance modulation. Devices with junction areas ranging from microscale to as small as 60 × 15 nm2are fabricated and electrically characterized. ON‐/OFF‐ conductance and reset current show weak area dependence when the device is relatively large, and they become proportional to the device area when further scaled down. Two‐layer devices with repeatable switching behavior are achieved. The current study shows the potentials of Ta:SiO2‐based 3D vertical devices for memory and computing applications. It also suggests that doping of the switching layer is an efficient approach to engineer the performance of memristive devices.

     
    more » « less
  5. Abstract

    The direct selective laser sintering (SLS) process was successfully demonstrated for additive manufacturing of high-entropy carbide ceramics (HECC), in which a Yb fiber laser was employed for ultrafast (in seconds) reactive sintering of HECC specimens from a powder mixture of constitute monocarbides. A single-phase non-equiatomic HECC was successfully formed in the 4-HECC specimen with a uniform distribution of Zr, Nb, Hf, Ta, and C. In contrast, a three-layer microstructure was formed in the 5-HECC specimen with five metal elements (Zr, Nb, Hf, Ta and Ti), consisting of a TiC-rich top layer, a Zr–Hf–C enriched intermediate layer, and a non-equiatomic Zr–Ta–Nb–Hf–C HECC layer. Vickers hardness of 4- and 5-HECC specimens were 22.2 and 21.8 GPa, respectively, on the surface. These findings have important implications on the fundamental mechanisms governing interactions between laser and monocarbide powders to form a solid solution of HECCs during SLS.

    Graphical abstract

     
    more » « less