skip to main content


Title: Assessing Coastal Road Flood Risk in Arctic Alaska, a Case Study from Hooper Bay
Rising waters and land subsidence are increasing relative sea levels in western and northern Alaska, forcing communities to relocate or armor in place. To appropriately plan and make equitable decisions, there is a need to forecast the risk of flood exposure in coastal Alaskan communities and to evaluate methods to mitigate that risk. This paper conducts use-inspired science to evaluate the current and future flood exposure of roads in Hooper Bay, Alaska, proposes a unit cost of flood exposure to estimate the cost of flooding, and compares various mitigation efforts including elevating roads and building dikes. Nine historic storms and their associated flood depths were subject to return-period analysis and modeled for several sea level rise scenarios. Based on the simulated road flood exposure (km hours/storm), and the storm-return period, an annual flood exposure (km hours/year) was computed. Then, the unit cost of flood exposure (USD/km hours) was determined as the ratio of the cost of flood mitigation (USD/year) to the annual flood exposure mitigated by the project. The analysis found that the unit cost of flood exposure, in conjunction with flood exposure calculations, does provide an approximate flood risk calculation, though a unitized cost of flood exposure needs to be divided into lump sum costs and materials costs. The analysis also found that dikes may be a more cost-effective alternative than road elevation. The flood risk calculation, based on the unit cost of flood exposure, could be made for all of the communities in a given region to identify those communities that face a high flood risk. Furthermore, if one divides the unit cost of flood exposure by the population, one obtains a cost/benefit ratio that potentially could be used to prioritize flood mitigation work.  more » « less
Award ID(s):
1745508 1927785
NSF-PAR ID:
10325992
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Volume:
10
Issue:
3
ISSN:
2077-1312
Page Range / eLocation ID:
406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rising sea levels have increased flood risk in coastal communities on both the east and west coasts of the USA. The goal of this analysis is to approximate flood defense costs from cyclonic flooding as a partial means to evaluate the resilience of coastal communities. Storm surge models were previously constructed via an established approach to represent historical and future coastal Louisiana landscapes and associated flood patterns. Coastal flooding was also previously simulated via a suite of 14 hurricanes. Approximate levee heights surrounding Lafitte, Louisiana, are calculated from the surge and wave output of Hurricane Isaac, the predominated hurricane in the Lafitte area for all years examined (NAVD88, m): 1.68 (1930), 2.92 (1970), 3.30 (1990), 4.82 (2010), 5.93 (2030), 6.57 (2050), 7.16 (2070), 7.70 (2090), and 8.22 (2110). Approximate costs per person are also calculated (2010 USD): $49,500 (1930), $41,400 (1970), $37,500 (1990), $181,600 (2010), $223,600 (2030), $247,800 (2050), $269,900 (2070), $290,100 (2090), and $309,800 (2110). The Gulf of Mexico (GOM) migrated 7.4 km inland within the Louisiana Barataria coastal basin between 1973 and 2010. For each person in Lafitte, flood defense costs increased approximately (2010 USD) $19,000 per person per kilometer inland migration of the GOM from 1973 to 2010. The methodology developed in this case study effectively connects wetland loss with increased flood defense costs and can be applied to communities with similar challenges. 
    more » « less
  2. null (Ed.)
    As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure. 
    more » « less
  3. null (Ed.)
    Terrestrial runoff can negatively impact marine ecosystems through stressors including excess nutrients, freshwater, sediments, and contaminants. Severe storms, which are increasing with global climate change, generate massive inputs of runoff over short timescales (hours to days); such runoff impacted offshore reefs in the northwest Gulf of Mexico (NW GoM) following severe storms in 2016 and 2017. Several weeks after coastal flooding from these events, NW GoM reef corals, sponges, and other benthic invertebrates ∼185 km offshore experienced mortality (2016 only) and/or sub-lethal stress (both years). To assess the impact of storm-derived runoff on reef filter feeders, we characterized the bacterial communities of two sponges, Agelas clathrodes and Xestospongia muta , from offshore reefs during periods of sub-lethal stress and no stress over a three-year period (2016—2018). Sponge-associated and seawater-associated bacterial communities were altered during both flood years. Additionally, we found evidence of wastewater contamination (based on 16S rRNA gene libraries and quantitative PCR) in offshore sponge samples, but not in seawater samples, following these flood years. Signs of wastewater contamination were absent during the no-flood year. We show that flood events from severe storms have the capacity to reach offshore reef ecosystems and impact resident benthic organisms. Such impacts are most readily detected if baseline data on organismal physiology and associated microbiome composition are available. This highlights the need for molecular and microbial time series of benthic organisms in near- and offshore reef ecosystems, and the continued mitigation of stormwater runoff and climate change impacts. 
    more » « less
  4. The research on coastal hazards predicts substantial adverse impacts of chronic and episodic flooding on populated coastal areas. Despite the growing evidence about anticipated flood risks, many coastal communities are still not adapting. The observed disconnect between science on physical impacts and adaptation decisionmaking in part reflects stakeholders’ inability to envision the implications of these impacts on socioeconomic systems and the built environment in their jurisdictions. This inertia is particularly apparent in the discourse on flood-driven displacement and relocation. There is a lack of knowledge about direct and indirect flood impacts on community attributes and services that contribute to relocation decision-making. This study holistically evaluates the flood exposure on municipal features vital for socioeconomic stability, livelihoods, and quality of life across spatiotemporal scales. As such, it uses a more nuanced approach to relocation risk assessment than those solely focused on direct inundation impacts. It measures flood exposure of land use, land cover, and sociocultural and economic dimensions that are important drivers of relocation in selected rural and urban areas. The approach uses a 50-year floodplain to delineate populated coastal locations exposed to 2% Annual Exceedance Probability (AEP) storm surge projections adjusted for 2030, 2060, and 2090 sea level rise (SLR) scenarios. It then evaluates the potential impacts of this flood exposure on different types of land uses and critical socioeconomic assets in rural (Dorchester and Talbot Counties, Maryland, USA) and urban (Cities of Hampton, Norfolk, Portsmouth, and Virginia Beach, Virginia, USA) settings. The results show that some urban land uses, such as open space, military and mixed-use, and rural residential and commercial areas, might experience significantly more flooding. There are also notable differences in the baseline flood exposure and the anticipated rate and acceleration in the future among selected communities with significant implications for relocation planning. 
    more » « less
  5. Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).

     
    more » « less