skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: The IRIS Imager: A freeware program for quantification of paint removal on IRIS films
Abstract

Soils with seasonal or continuous water saturation are characterized by unique redox‐related processes including Fe and Mn oxide reduction. Indicators of reduction in soils (IRIS) devices were created as low‐cost, direct sensors of such reduced chemistry. Such IRIS devices are painted with oxides of Fe or Mn, inserted into the soil, and then removed after a period of time; once removed, the paint lost due to reductive dissolution of these oxides is used to indicate the presence, location, and/or intensity of reducing conditions. However, quantifying the paint removal using existing methods can be subjective and time consuming. Here, we describe the use of the IRIS Imager, an image analysis program that calculates removal of paint from IRIS films inL*a*b* color space (whereL* is lightness,a* is red–green value, andb* is blue–yellow value) by comparing the change in lightness between initial and final IRIS film images. Paint removal from films deployed in flooded rice (Oryza sativaL.) paddy soils were quantified using the IRIS Imager, the grid method, and chemical extractions of IRIS films. All three methods were suitable for quantification of paint removal, but the IRIS Imager provided additional statistics to assess heterogeneity in paint removal on individual films and a less subjective approach to quantifying Mn oxide paint removal when Fe oxidation on Mn films was present. This free software can be used with IRIS devices to reproducibly measure paint removal from Fe oxide and Mn oxide IRIS and Fe oxide precipitation on Mn oxide IRIS.

 
more » « less
Award ID(s):
1930806
NSF-PAR ID:
10360372
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Soil Science Society of America Journal
Volume:
85
Issue:
6
ISSN:
0361-5995
Page Range / eLocation ID:
p. 2210-2219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The objective of this study was to investigate the application of manganese oxide [MnO x(s) ] and granular activated carbon (GAC) media for the removal of caffeine and acetaminophen from water. Organic contaminants of emerging concern represent a developing issue due to their effects on human health and the environment. Manganese oxides are effective for water treatment because of their ability to mediate adsorption and oxidation–reduction reactions for many organic and inorganic constituents. Laboratory scale column experiments were performed using different combinations of commercial MnO x(s) and GAC for assessing the removal of caffeine and acetaminophen, and the subsequent release of soluble Mn due to the reductive dissolution of MnO x(s) . The removal of acetaminophen was detected for all media combinations investigated. However, the removal of caffeine by adsorption only occurred in columns containing GAC media. There was no removal of caffeine in columns containing only MnO x(s) media. Manganese release occurred in columns containing MnO x(s) media, but concentrations were below the secondary drinking water standard of 50 μg L −1 set by the US Environmental Protection Agency. Soluble Mn released from a first process by MnO x(s) media column was removed through adsorption into the GAC media used in a second process. The results of this investigation are relevant for implementation of MnO x(s) and GAC media combinations as an effective treatment process to remove organic contaminants from water. 
    more » « less
  2. Abstract

    In headwater catchments, surface groundwater discharge areas have unique soil biogeochemistry and can be hot spots for solute contribution to streams. Across the northeastern United States, headwater hillslopes with surface groundwater discharge were enriched in soil Mn, including Watershed 3 of Hubbard Brook Experimental Forest, New Hampshire. Soils of this site were investigated along a grid to determine extent of Mn‐rich zone(s) and relationships to explanatory variables using ordinary kriging. The O and B horizons were analyzed for total secondary Mn and Fe, Cr oxidation potential, total organic C, moisture content, wetness ratio, and pH. Two Mn hot spots were found: a poorly drained, flowing spring (Location A); and a moderately well‐drained swale (Location B). Both had ∼6,000–9,000 mg Mn kg–1soil. However, Location A had high Cr oxidation potential (a measure of Mn reactivity), whereas Location B did not. Location C, a poorly drained seep with slow‐moving water, had lower Mn content and Cr oxidation potential. Manganese‐rich soil particles were analyzed using X‐ray absorption near‐edge structure and micro‐X‐ray diffraction; the dominant oxidation state was Mn(IV), and the dominant Mn oxide species was a layer‐type Mn oxide (L‐MnO2). We propose input of Mn(II) with groundwater, which is oxidized by soil microbes. Studies of catchment structure and response could benefit from identifying hot spots of trace metals, sourced mainly from parent material but which accumulate according to hydropedologic conditions. Small‐scale variation in Mn enrichment due to groundwater and microtopography appears to be more important than regional‐scale variation due to air pollution.

     
    more » « less
  3. Abstract

    The small‐polaron hopping model has been used for six decades to rationalize electronic charge transport in oxides. The model was developed for binary oxides, and, despite its significance, its accuracy has not been rigorously tested for higher‐order oxides. Here, the small‐polaron transport model is tested by using a spinel system with mixed cation oxidation states (MnxFe3−xO4). Using molecular‐beam epitaxy (MBE), a series of single crystal MnxFe3−xO4thin films with controlled stoichiometry, 0 ≤x ≤ 2.3, and lattice strain are grown, and the cation site‐occupation is determined through X‐ray emission spectroscopy (XES). Density functional theory +Uanalysis shows that charge transport occurs only between like‐cations (Fe/Fe or Mn/Mn). The site‐occupation data and percolation models show that there are limited stoichiometric ranges for transport along Fe and Mn pathways. Furthermore, due to asymmetric hopping barriers and formation energies, the polaron is energetically preferred to the polaron, resulting in an asymmetric contribution of Mn/Mn pathways. All of these findings are not contained in the conventional small‐polaron hopping model, highlighting its inadequacy. To correct the model, new parameters in the nearest‐neighbor hopping equation are introduced to account for percolation, cross‐hopping, and polaron‐distribution, and it is found that a near‐perfect correlation can be made between experiment and theory for the electronic conductivity.

     
    more » « less
  4. Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single‐crystal oxide substrates such as strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) to satisfy lattice matching and minimize defect formation. However, these single‐crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth‐based layered oxides, for the transfer. A water‐soluble sacrificial layer of Sr3Al2O6is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO3) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.

     
    more » « less
  5. null (Ed.)
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments. 
    more » « less