Abstract The Pauli exclusion principle governs the fundamental structure and function of fermionic systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure state, it is subject to additional restrictions known as the generalized Pauli constraints (GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system using data from a superconducting-qubit quantum computer. We prepare states of systems with three-to-seven qubits directly on the quantum device and measure the one-fermion reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the presence of a single-qubit environment. Results confirm experimentally that the openness of a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with potential applications from quantum computing and sensing to noise-assisted energy transfer.
more »
« less
Quantum simulation of molecules without fermionic encoding of the wave function
Abstract Molecular simulations generally require fermionic encoding in which fermion statistics are encoded into the qubit representation of the wave function. Recent calculations suggest that fermionic encoding of the wave function can be bypassed, leading to more efficient quantum computations. Here we show that the two-electron reduced density matrix (2-RDM) can be expressed as a unique functional of the unencodedN-qubit-particle wave function without approximation, and hence, the energy can be expressed as a functional of the 2-RDM without fermionic encoding of the wave function. In contrast to current hardware-efficient methods, the derived functional has a unique, one-to-one (and onto) mapping between the qubit-particle wave functions and 2-RDMs, which avoids the over-parametrization that can lead to optimization difficulties such as barren plateaus. An application to computing the ground-state energy and 2-RDM of H4is presented.
more »
« less
- Award ID(s):
- 2035876
- PAR ID:
- 10360374
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 113037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.more » « less
-
We develop a systematic framework for the spin adaptation of the cumulants of p-particle reduced density matrices (RDMs), with explicit constructions for p = 1 to 3. These spin-adapted cumulants enable rigorous treatment of both Ŝz and Ŝ2 symmetries in quantum systems, providing a foundation for spin-resolved electronic structure methods. We show that complete spin adaptation—referred to as completeS-representability—can be enforced by constraining the variances of Ŝz and Ŝ2, which require the 2-RDM and 4-RDM, respectively. Importantly, the cumulants of RDMs scale linearly with system size—size-extensive—making them a natural object for incorporating spin symmetries in scalable electronic structure theories. The developed formalism is applicable to density-based methods, one-particle RDM functional theories, and two-particle RDM methods. We further extend the approach to spin–orbit-coupled systems via total angular momentum adaptation. Beyond spin, the framework enables the adaptation of RDM theories to additional symmetries through the construction of suitable irreducible tensor operators.more » « less
-
Abstract Superconductivity and exciton condensation are fundamental phenomena in condensed matter physics, associated with the condensation of electron–electron and electron–hole pairs, respectively, into coherent quantum states. In this study, we present evidence of a superconductor to exciton condensate transition within the context of the three-band Hubbard model of copper-oxide-like materials. As the electron–electron repulsion increases, the superconducting phase is superseded by exciton condensation. In support of theoretical predictions—not yet realized experimentally—we observe the coexistence of the two condensates in the vicinity of the transition where the quantum states become a superposition of electron–electron and electron–hole condensates. Coexistence is rigorously computed from large eigenvalues and their eigenvectors in both the two-electron reduced density matrix (2-RDM) and the particle-hole RDM, which we obtain from a direct variational ground-state energy minimization with respect to the 2-RDM by semidefinite programming. We further discern that adjacentdorbitals and interveningporbitals facilitate electron–electron pairing between copper orbitals, thereby supporting the superexchange mechanism for superconductivity. These observations suggest the feasibility of witnessing a superconductor to exciton condensate transition in copper-oxide analogs, bearing significant implications for identifying materials conducive to efficient transport processes.more » « less
-
Abstract Electromagnetic ion cyclotron waves in the Earth's outer radiation belt drive rapid electron losses through wave‐particle interactions. The precipitating electron flux can be high in the hundreds of keV energy range, well below the typical minimum resonance energy. One of the proposed explanations relies on nonresonant scattering, which causes pitch‐angle diffusion away from the fundamental cyclotron resonance. Here we propose the fractional sub‐cyclotron resonance, a second‐order nonlinear effect that scatters particles at resonance ordern = 1/2, as an alternate explanation. Using test‐particle simulations, we evaluate the precipitation ratios of sub‐MeV electrons for wave packets with various shapes, amplitudes, and wave normal angles. We show that the nonlinear sub‐cyclotron scattering produces larger ratios than the nonresonant scattering when the wave amplitude reaches sufficiently large values. The ELFIN CubeSats detected several events with precipitation ratio patterns matching our simulation, demonstrating the importance of sub‐cyclotron resonances during intense precipitation events.more » « less
An official website of the United States government
