skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Bayesian Machine Learning Algorithm for Predicting ENSO Using Short Observational Time Series
Abstract A simple and efficient Bayesian machine learning (BML) training algorithm, which exploits only a 20‐year short observational time series and an approximate prior model, is developed to predict the Niño 3 sea surface temperature (SST) index. The BML forecast significantly outperforms model‐based ensemble predictions and standard machine learning forecasts. Even with a simple feedforward neural network (NN), the BML forecast is skillful for 9.5 months. Remarkably, the BML forecast overcomes the spring predictability barrier to a large extent: the forecast starting from spring remains skillful for nearly 10 months. The BML algorithm can also effectively utilize multiscale features: the BML forecast of SST using SST, thermocline, and windburst improves on the BML forecast using just SST by at least 2 months. Finally, the BML algorithm also reduces the forecast uncertainty of NNs and is robust to input perturbations.  more » « less
Award ID(s):
1854299
PAR ID:
10360653
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study illustrates the considerable improvement in accuracy achievable for long‐lead forecasts (18 months) of the Ocean Niño Index (ONI) through the utilization of a long short‐term memory (LSTM) machine learning algorithm. The research assesses the predictive potential of eight predictors from both tropical and extratropical regions constructed based on sea surface temperature, outgoing longwave radiation, sea surface height and zonal and meridional wind anomalies. In comparison to linear regression model forecasts, the LSTM model outperforms them for both the tropical and extratropical predictor sets. Among all the predictors, the western North Pacific (WNP) index demonstrates the highest prediction skill in ONI forecasts, followed by the North Tropical Atlantic (NTA) index and then the sea surface height index. While other predictors help the LSTM model to forecast either the phase variation of the amplitude variation of the observed ONI, the extratropical WNP predictor enables the LSTM model to forecast both variations. This superiority can be attributed to the involvement of SST anomalies in the WNP region in both tropical and extratropical El Niño–Southern Oscillation (ENSO) dynamics, allowing for the utilization of predictive potential from both components of ENSO dynamics. The study also concludes that the extratropical ENSO dynamics provide a robust source of predictability for long‐lead ENSO forecasts, which can be effectively harnessed using the LSTM model. 
    more » « less
  2. Abstract Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out to a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts. 
    more » « less
  3. Abstract Subseasonal‐to‐decadal atmospheric prediction skill attained from initial conditions is typically limited by the chaotic nature of the atmosphere. However, for some atmospheric phenomena, prediction skill on subseasonal‐to‐decadal timescales is increased when the initial conditions are in a particular state. In this study, we employ machine learning to identify sea surface temperature (SST) regimes that enhance prediction skill of North Atlantic atmospheric circulation. An ensemble of artificial neural networks is trained to predict anomalous, low‐pass filtered 500 mb height at 7–8 weeks lead using SST. We then use self‐organizing maps (SOMs) constructed from 9 regions within the SST domain to detect state‐dependent prediction skill. SOMs are built using the entire SST time series, and we assess which SOM units feature confident neural network predictions. Four regimes are identified that provide skillful seasonal predictions of 500 mb height. Our findings demonstrate the importance of extratropical decadal SST variability in modulating downstream ENSO teleconnections to the North Atlantic. The methodology presented could aid future forecasting on subseasonal‐to‐decadal timescales. 
    more » « less
  4. Abstract Few studies have utilized machine learning techniques to predict or understand the Madden‐Julian oscillation (MJO), a key source of subseasonal variability and predictability. Here, we present a simple framework for real‐time MJO prediction using shallow artificial neural networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic, that predict a real‐time MJO index using maps of tropical variables. These ANNs make skillful MJO predictions out to ∼18 days in October‐March and ∼11 days in April‐September, outperforming conventional linear models and efficiently capturing aspects of MJO predictability found in more complex, dynamical models. The flexibility and explainability of simple ANN frameworks are highlighted through varying model input and applying ANN explainability techniques that reveal sources and regions important for ANN prediction skill. The accessibility, performance, and efficiency of this simple machine learning framework is more broadly applicable to predict and understand other Earth system phenomena. 
    more » « less
  5. Abstract Biased, incomplete numerical models are often used for forecasting states of complex dynamical systems by mapping an estimate of a “true” initial state into model phase space, making a forecast, and then mapping back to the “true” space. While advances have been made to reduce errors associated with model initialization and model forecasts, we lack a general framework for discovering optimal mappings between “true” dynamical systems and model phase spaces. Here, we propose using a data‐driven approach to infer these maps. Our approach consistently reduces errors in the Lorenz‐96 system with an imperfect model constructed to produce significant model errors compared to a reference configuration. Optimal pre‐ and post‐processing transforms leverage “shocks” and “drifts” in the imperfect model to make more skillful forecasts of the reference system. The implemented machine learning architecture using neural networks constructed with a custom analog‐adjoint layer makes the approach generalizable across applications. 
    more » « less