skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin-neutral currents for spintronics
Abstract Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2(001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.  more » « less
Award ID(s):
2044049
PAR ID:
10360673
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Altermagnetic (AM) materials have recently attracted significant interest due to their non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on conducting properties of AM metals and semiconductors, while functional properties of AM insulators have remained largely unexplored. Here, we propose employing AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets MF2 (M = Fe, Co, Ni), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled MF2 (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on AMIs CoF2 and NiF2 if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices. 
    more » « less
  2. Spin-polarized antiferromagnets have recently gained significant interest because they combine the advantages of both ferromagnets (spin polarization) and antiferromagnets (absence of net magnetization) for spintronics applications. In particular, spin-polarized antiferromagnetic metals can be useful as active spintronics materials because of their high electrical and thermal conductivities and their ability to host strong interactions between charge transport and magnetic spin textures. We review spin and charge transport phenomena in spin-polarized antiferromagnetic metals in which the interplay of metallic conductivity and spin-split bands offers novel practical applications and new fundamental insights into antiferromagnetism. We focus on three types of antiferromagnets: canted antiferromagnets, noncollinear antiferromagnets, and collinear altermagnets. We also discuss how the investigation of spin-polarized antiferromagnetic metals can open doors to future research directions. 
    more » « less
  3. Abstract Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics, where an AFM Néel vector is used as a state variable. Efficient electric control and detection of the Néel vector are critical for spintronic applications. This review article features fundamental properties of AFM tunnel junctions (AFMTJs) as spintronic devices where such electric control and detection can be realized. We emphasize critical requirements for observing a large tunneling magnetoresistance (TMR) effect in AFMTJs with collinear and noncollinear AFM electrodes, such as a momentum-dependent spin polarization and Néel spin currents. We further discuss spin torques in AFMTJs that are capable of Néel vector switching. Overall, AFMTJs have potential to become a new standard for spintronics providing larger magnetoresistive effects, few orders of magnitude faster switching speed, and much higher packing density than conventional magnetic tunnel junctions (MTJs). 
    more » « less
  4. Abstract Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO3/SrTiO3/SrRuO3(001) MTJs and predict tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching (mismatching) of the incoming and outcoming Bloch states in the SrRuO3(001) electrodes and evanescent states in the SrTiO3(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO3/SrTiO3/SrRuO3(001) MTJs is strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs. 
    more » « less
  5. Abstract Non‐collinear antiferromagnets (AFMs) are an exciting new platform for studying intrinsic spin Hall effects (SHEs), phenomena that arise from the materials’ band structure, Berry phase curvature, and linear response to an external electric field. In contrast to conventional SHE materials, symmetry analysis of non‐collinear antiferromagnets does not forbid non‐zero longitudinal and out‐of‐plane spin currents with polarization and predicts an anisotropy with current orientation to the magnetic lattice. Here, multi‐component out‐of‐plane spin Hall conductivities are reported in L12‐ordered antiferromagnetic PtMn3thin films that are uniquely generated in the non‐collinear state. The maximum spin torque efficiencies (ξ  =JS /Je ≈ 0.3) are significantly larger than in Pt (ξ  ≈  0.1). Additionally, the spin Hall conductivities in the non‐collinear state exhibit the predicted orientation‐dependent anisotropy, opening the possibility for new devices with selectable spin polarization. This work demonstrates symmetry control through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems. 
    more » « less