The Arctic is undergoing rapid changes in climate, altering the status and functioning of high-latitude soils and permafrost. The vast majority of studies on Arctic soils and permafrost are conducted during the summer period due to ease of accessibility, sampling, instrument operation, and making measurements, in comparison to during winter and transition seasons. However, there is increasing evidence that microbial activity continues in Arctic soils outside of the summer period. Moreover, it is becoming clear that understanding the seasonal dynamics of Arctic soils is of critical importance, especially considering that the under-studied winter is the period that is most sensitive to climate warming. Soil biogeochemical models have advanced our understanding of the functioning and fate of soils in the Arctic, however it is vital that seasonality in biotic and abiotic processes is accurately captured in these models. Here we synthesize recent investigations and observations of the year-round functioning of Arctic soils, review soil biogeochemical modelling frameworks, and highlight certain processes and behaviors that are shaped by seasonality and thus warrant particular consideration within these models. More attention to seasonal processes will be critical to improving datasets and soil biogeochemical models that can be used to understand the year-round functioning of soils and the fate of the soil carbon reservoir in the Arctic. 
                        more » 
                        « less   
                    
                            
                            The changing carbon balance of tundra ecosystems: results from a vertically-resolved peatland biosphere model
                        
                    
    
            Abstract An estimated 1700 Pg of carbon is frozen in the Arctic permafrost and the fate of this carbon is unclear because of the complex interaction of biophysical, ecological and biogeochemical processes that govern the Arctic carbon budget. Two key processes determining the region’s long-term carbon budget are: (a) carbon uptake through increased plant growth, and (b) carbon release through increased heterotrophic respiration (HR) due to warmer soils. Previous predictions for how these two opposing carbon fluxes may change in the future have varied greatly, indicating that improved understanding of these processes and their feedbacks is critical for advancing our predictive ability for the fate of Arctic peatlands. In this study, we implement and analyze a vertically-resolved model of peatland soil carbon into a cohort-based terrestrial biosphere model to improve our understanding of how on-going changes in climate are altering the Arctic carbon budget. A key feature of the formulation is that accumulation of peat within the soil column modifies its texture, hydraulic conductivity, and thermal conductivity, which, in turn influences resulting rates of HR within the soil column. Analysis of the model at three eddy covariance tower sites in the Alaskan tundra shows that the vertically-resolved soil column formulation accurately captures the zero-curtain phenomenon, in which the temperature of soil layers remain at or near 0 °C during fall freezeback due to the release of latent heat, is critical to capturing observed patterns of wintertime respiration. We find that significant declines in net ecosystem productivity (NEP) occur starting in 2013 and that these declines are driven by increased HR arising from increased precipitation and warming. Sensitivity analyses indicate that the cumulative NEP over the decade responds strongly to the estimated soil carbon stock and more weakly to vegetation abundance at the beginning of the simulation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1936752
- PAR ID:
- 10361191
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 014019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many consequences, including reduced habitat for cold-water fish species, reduced quality of drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both allochthonous and autochthonous OC loads contribute to oxygen depletion by providing substrate for microbial respiration; however, their relative contributions to oxygen depletion across diverse lake systems remain uncertain. Lake characteristics, such as trophic state, hydrology, and morphometry, are also influential in carbon-cycling processes and may impact oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic oxygen depletion, we used a two-layer process-based lake model to simulate daily metabolism dynamics for six Wisconsin lakes over 20 years (1995–2014). Physical processes and internal metabolic processes were included in the model and were used to predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC respiration in the water column contributed the most towards hypolimnetic oxygen depletion in the eutrophic study lakes. POC water column respiration and sediment respiration had similar contributions in the mesotrophic and oligotrophic study lakes. Differences in terms of source of respiration are discussed with consideration of lake productivity and the processing and fates of organic carbon loads.more » « less
- 
            Abstract Many secondary deciduous forests of eastern North America are approaching a transition in which mature early‐successional trees are declining, resulting in an uncertain future for this century‐long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling‐induced mortality of >6,700 early‐successionalPopulusspp. (aspen) andBetula papyrifera(paper birch). Meteorological flux tower‐based C cycling observations from the 33‐ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid‐late‐successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1‐yr recovery of total leaf area index as mid‐late‐successionalAcer,Quercus, andPinusassumed canopy dominance. The transition to mid‐late‐successional species dominance improved carbon‐use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid‐late‐successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.more » « less
- 
            Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.more » « less
- 
            null (Ed.)Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year −1 , was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year −1 ) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
