skip to main content


Title: Demonstrating two-qubit entangling gates at the quantum speed limit using superconducting qubits
The speed of elementary quantum gates, particularly two-qubit entangling gates, ultimately sets the limit on the speed at which quantum circuits can operate. In this work, we demonstrate experimentally two-qubit entangling gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconducting transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method. Importantly, our method only requires the single-qubit drive strength to be moderately larger than the interaction strength to achieve an arbitrary entangling gate close to its analytical speed limit with high fidelity. Thus, the method is applicable to a variety of platforms including those with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions.  more » « less
Award ID(s):
1839232
NSF-PAR ID:
10361261
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
2206.07716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer. While there has been much progress in suppressing single-qubit gate errors in superconducting qubit systems, two-qubit gates still suffer from error rates that are orders of magnitude higher. One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states. While this interaction is usually viewed as a nuisance, here we experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates in a coupled transmon qubit system. To implement arbitrary single-qubit rotations, we design a new protocol called the two-axis gate that is based on a three-part composite pulse. It rotates a single qubit independently of the state of the other qubit despite the strong ZZ-coupling. We achieve single-qubit gate fidelities as high as 99.1% from randomized benchmarking measurements. We then demonstrate both a CZ gate and a CNOT gate. Because the system has a strong ZZ-interaction, a CZ gate can be achieved by letting the system freely evolve for a gate time tg=53.8 ns. To design the CNOT gate, we utilize an analytical microwave pulse shape based on the SWIPHT protocol for realizing fast, low-leakage gates. We obtain fidelities of 94.6% and 97.8% for the CNOT and CZ gates respectively from quantum progress tomography. 
    more » « less
  2. Scalability of today’s superconducting quantum computers is limited due to the huge costs of generating/routing microwave control pulses per qubit from room temperature. One active research area in both industry and academia is to push the classical controllers to the dilution refrigerator in order to increase the scalability of quantum computers. Superconducting Single Flux Quantum (SFQ) is a classical logic technology with low power consumption and ultra-high speed, and thus is a promising candidate for in-fridge classical controllers with maximized scalability. Prior work has demonstrated high-fidelity SFQ-based single-qubit gates. However, little research has been done on SFQ-based multi-qubit gates, which are necessary to realize SFQ-based universal quantum computing.In this paper, we present the first thorough analysis of SFQ-based two-qubit gates. Our observations show that SFQ-based two-qubit gates tend to have high leakage to qubit non-computational subspace, which presents severe design challenges. We show that despite these challenges, we can realize gates with high fidelity by carefully designing optimal control methods and qubit architectures. We develop optimal control methods that suppress leakage, and also investigate various qubit architectures that reduce the leakage. After carefully engineering our SFQ-friendly quantum system, we show that it can achieve similar gate fidelity and gate time to microwave-based quantum systems. The promising results of this paper show that (1) SFQ-based universal quantum computation is both feasible and effective; and (2) SFQ is a promising approach in designing classical controller for quantum machines because it can increase the scalability while preserving gate fidelity and performance. 
    more » « less
  3. We revisit the implementation of a two-qubit entangling gate, the Mølmer-Sørensen gate, using the adiabatic Rydberg dressing paradigm. We study the implementation of rapid adiabatic passage using a two-photon transition, which does not require the use of an ultra-violet laser, and can be implemented using only amplitude modulation of one field with all laser frequencies fixed. We find that entangling gate fidelities, comparable to the one-photon excitation, are achievable with the two-photon excitation. Moreover, we address how the adiabatic dressing protocol can be used to implement entangling gates outside the regime of a perfect Rydberg blockade. We show that using adiabatic dressing we can achieve a scaling of gate fidelity set by the fundamental limits to entanglement generated by the Rydberg interactions while simultaneously retaining limited population in the doubly excited Rydberg state. This allows for fast high fidelity gates for atoms separated beyond the blockade radius. 
    more » « less
  4. We describe a simple protocol for the single-step generation of N-body entangling interactions between trapped atomic ion qubits. We show that qubit state-dependent squeezing operations and displacement forces on the collective atomic motion can generate full N-body interactions. Similar to the Mølmer-Sørensen two-body Ising interaction at the core of most trapped ion quantum computers and simulators, the proposed operation is relatively insensitive to the state of motion. We show how this N-body gate operation allows the single-step implementation of a family of N-bit gate operations such as the powerful N-Toffoli gate, which flips a single qubit if and only if all other N-1 qubits are in a particular state. 
    more » « less
  5. Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d -dimensional Schrödinger equation with η particles can be simulated with gate complexity O ~ ( η d F poly ( log ⁡ ( g ′ / ϵ ) ) ) , where ϵ is the discretization error, g ′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g ′ from poly ( g ′ / ϵ ) to poly ( log ⁡ ( g ′ / ϵ ) ) and polynomially improves the dependence on T and d , while maintaining best known performance with respect to η . For the case of Coulomb interactions, we give an algorithm using η 3 ( d + η ) T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates, and another using η 3 ( 4 d ) d / 2 T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization. 
    more » « less