Abstract Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain–body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with other individuals is co-modulated by the level of attentional engagement with the stimulus.
more »
« less
Integrating neural and ocular attention reorienting signals in virtual reality
Abstract Objective.Reorienting is central to how humans direct attention to different stimuli in their environment. Previous studies typically employ well-controlled paradigms with limited eye and head movements to study the neural and physiological processes underlying attention reorienting. Here, we aim to better understand the relationship between gaze and attention reorienting using a naturalistic virtual reality (VR)-based target detection paradigm.Approach.Subjects were navigated through a city and instructed to count the number of targets that appeared on the street. Subjects performed the task in a fixed condition with no head movement and in a free condition where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were collected. To investigate how neural and physiological reorienting signals are distributed across different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify EEG and pupil-based discriminating components. Mixed-effects general linear models (GLM) were used to determine the correlation between these discriminating components and the different gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify reorienting events.Main results.In both EEG and pupil, dwell time contributes most significantly to the reorienting signals. However, when dwell times were orthogonalized against other gaze events, the distributions of the reorienting signals were different across the two modalities, with EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both the fixed (AUC = 0.79) and the free (AUC = 0.77) condition.Significance.We show that the neural and ocular reorienting signals are distributed differently across gaze events when a subject is immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor objects to which the human subject orients.
more »
« less
- Award ID(s):
- 1816363
- PAR ID:
- 10361339
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Neural Engineering
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1741-2560
- Page Range / eLocation ID:
- Article No. 066052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In eye-tracked augmented and virtual reality (AR/VR), instantaneous and accurate hands-free selection of virtual elements is still a significant challenge. Though other methods that involve gaze-coupled head movements or hovering can improve selection times in comparison to methods like gaze-dwell, they are either not instantaneous or have difficulty ensuring that the user’s selection is deliberate. In this paper, we present EyeShadows, an eye gaze-based selection system that takes advantage of peripheral copies (shadows) of items that allow for quick selection and manipulation of an object or corresponding menus. This method is compatible with a variety of different selection tasks and controllable items, avoids the Midas touch problem, does not clutter the virtual environment, and is context sensitive. We have implemented and refined this selection tool for VR and AR, including testing with optical and video see-through (OST/VST) displays. Moreover, we demonstrate that this method can be used for a wide range of AR and VR applications, including manipulation of sliders or analog elements. We test its performance in VR against three other selection techniques, including dwell (baseline), an inertial reticle, and head-coupled selection. Results showed that selection with EyeShadows was significantly faster than dwell (baseline), outperforming in the select and search and select tasks by 29.8% and 15.7%, respectively, though error rates varied between tasks.more » « less
-
Narratives can synchronize neural and physiological signals between individuals, but the relationship between these signals, and the underlying mechanism, is unclear. We hypothesized a top-down effect of cognition on arousal and predicted that auditory narratives will drive not only brain signals but also peripheral physiological signals. We find that auditory narratives entrained gaze variation, saccade initiation, pupil size, and heart rate. This is consistent with a top-down effect of cognition on autonomic function. We also hypothesized a bottom-up effect, whereby autonomic physiology affects arousal. Controlled breathing affected pupil size, and heart rate was entrained by controlled saccades. Additionally, fluctuations in heart rate preceded fluctuations of pupil size and brain signals. Gaze variation, pupil size, and heart rate were all associated with anterior-central brain signals. Together, these results suggest bidirectional causal effects between peripheral autonomic function and central brain circuits involved in the control of arousal.more » « less
-
Abstract Real-world work environments require operators to perform multiple tasks with continual support from an automated system. Eye movement is often used as a surrogate measure of operator attention, yet conventional summary measures such as percent dwell time do not capture dynamic transitions of attention in complex visual workspace. This study analyzed eye movement data collected in a controlled a MATB-II task environment using gaze transition entropy analysis. In the study, human subjects performed a compensatory tracking task, a system monitoring task, and a communication task concurrently. The results indicate that both gaze transition entropy and stationary gaze entropy, measures of randomness in eye movements, decrease when the compensatory tracking task required more continuous monitoring. The findings imply that gaze transition entropy reflects attention allocation of operators performing dynamic operational tasks consistently.more » « less
-
Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.more » « less