Abstract Many problems in climate science require extracting forced signals from a background of internal climate variability. We demonstrate that artificial neural networks (ANNs) are a useful addition to the climate science “toolbox” for this purpose. Specifically, forced patterns are detected by an ANN trained on climate model simulations under historical and future climate scenarios. By identifying spatial patterns that serve as indicators of change in surface temperature and precipitation, the ANN can determine the approximate year from which the simulations came without first explicitly separating the forced signal from the noise of both internal climate variability and model uncertainty. Thus, the ANN indicator patterns are complex, nonlinear combinations of signal and noise and are identified from the 1960s onward in simulated and observed surface temperature maps. This approach suggests that viewing climate patterns through an artificial intelligence (AI) lens has the power to uncover new insights into climate variability and change.
more »
« less
Indicator Patterns of Forced Change Learned by an Artificial Neural Network
Abstract Many problems in climate science require the identification of signals obscured by both the “noise” of internal climate variability and differences across models. Following previous work, we train an artificial neural network (ANN) to predict the year of a given map of annual‐mean temperature (or precipitation) from forced climate model simulations. This prediction task requires the ANN to learn forced patterns of change amidst a background of climate noise and model differences. We then apply a neural network visualization technique (layerwise relevance propagation) to visualize the spatial patterns that lead the ANN to successfully predict the year. These spatial patterns thus serve as “reliable indicators” of the forced change. The architecture of the ANN is chosen such that these indicators vary in time, thus capturing the evolving nature of regional signals of change. Results are compared to those of more standard approaches like signal‐to‐noise ratios and multilinear regression in order to gain intuition about the reliable indicators identified by the ANN. We then apply an additional visualization tool (backward optimization) to highlight where disagreements in simulated and observed patterns of change are most important for the prediction of the year. This work demonstrates that ANNs and their visualization tools make a powerful pair for extracting climate patterns of forced change.
more »
« less
- PAR ID:
- 10361350
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Assessing forced climate change requires the extraction of the forced signal from the background of climate noise. Traditionally, tools for extracting forced climate change signals have focused on one atmospheric variable at a time, however, using multiple variables can reduce noise and allow for easier detection of the forced response. Following previous work, we train artificial neural networks to predict the year of single‐ and multi‐variable maps from forced climate model simulations. To perform this task, the neural networks learn patterns that allow them to discriminate between maps from different years—that is, the neural networks learn the patterns of the forced signal amidst the shroud of internal variability and climate model disagreement. When presented with combined input fields (multiple seasons, variables, or both), the neural networks are able to detect the signal of forced change earlier than when given single fields alone by utilizing complex, nonlinear relationships between multiple variables and seasons. We use layer‐wise relevance propagation, a neural network explainability tool, to identify the multivariate patterns learned by the neural networks that serve as reliable indicators of the forced response. These “indicator patterns” vary in time and between climate models, providing a template for investigating inter‐model differences in the time evolution of the forced response. This work demonstrates how neural networks and their explainability tools can be harnessed to identify patterns of the forced signal within combined fields.more » « less
-
Abstract Objective . Neural decoding is an important tool in neural engineering and neural data analysis. Of various machine learning algorithms adopted for neural decoding, the recently introduced deep learning is promising to excel. Therefore, we sought to apply deep learning to decode movement trajectories from the activity of motor cortical neurons. Approach . In this paper, we assessed the performance of deep learning methods in three different decoding schemes, concurrent, time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the network is the neural activity coincidental to the movement, deep learning networks including artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode movement and compared with traditional machine learning algorithms. Both ANN and LSTM were further evaluated in the time-delay decoding scheme in which temporal delays are allowed between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained convolutional neural network (CNN) to extract movement information from images representing the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal network. To reveal the input features of the CNN in the hybrid network that deep learning discovered for movement decoding, we performed a sensitivity analysis and identified specific regions in the spatial domain. Main results . Deep learning networks (ANN and LSTM) outperformed traditional machine learning algorithms in the concurrent decoding scheme. The results of ANN and LSTM in the time-delay decoding scheme showed that including neural data from time points preceding movement enabled decoders to perform more robustly when the temporal relationship between the neural activity and movement dynamically changes over time. In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the concurrent ANN decoder outperformed single-network concurrent decoders. Significance . Taken together, our study demonstrates that deep learning could become a robust and effective method for the neural decoding of behavior.more » « less
-
Abstract An issue of global concern is how climate change forcing is transmitted to ecosystems. Forest ecosystems in mountain landscapes may demonstrate buffering and perhaps decoupling of long‐term rates of temperature change, because vegetation, topography, and local winds (e.g., cold air pooling) influence temperature and potentially create microclimate refugia (areas which are relatively protected from climate change). We tested these ideas by comparing 45‐year regional rates of air temperature change to unique temporal and spatial air temperature records in the understory of regionally representative stable old forest at the H.J. Andrews Experimental Forest, Oregon, USA. The 45‐year seasonal patterns and rates of warming were similar throughout the forested landscape and matched regional rates observed at 88 standard meteorological stations in Oregon and Washington, indicating buffering, but not decoupling of long‐term climate change rates. Consideration of the energy balance explains these results: while shading and airflows produce spatial patterns of temperature, these processes do not counteract global increases in air temperature driven by increased downward, longwave radiation forced by increased anthropogenic greenhouse gases in the atmosphere. In some months, the 45‐year warming in the forest understory equaled or exceeded spatial differences of air temperature between the understory and the canopy or canopy openings and was comparable to temperature change over 1,000 m elevation, while in other months there has been little change. These findings have global implications because they indicate that microclimate refugia are transient, even in this forested mountain landscape.more » « less
-
Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely Deep Image-based Spatio-Temporal network (DeepIST), for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects:1) we propose to plot a path as a sequence of -generalized images"which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN)on image processing; 2) we design a novel two-dimensional CNN, namely PathCNN, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37% to 25.64% of mean absolute error (MAE) in multiple large-scale real-world datasets.more » « less
An official website of the United States government
