skip to main content

Title: Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor
Abstract Background

Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity inCamponotus floridanuscarpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains.

Results

We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genesPeriodandShaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found thatVitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains more » but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression.

Conclusion

This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found inC. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.

« less
Authors:
;
Award ID(s):
1941546
Publication Date:
NSF-PAR ID:
10361486
Journal Name:
BMC Genomics
Volume:
23
Issue:
1
ISSN:
1471-2164
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Vitellogenin has been proposed to regulate division of labor and social organization in social insects. The red imported fire ant (Solenopsis invicta) harbors four distinct, adjacent vitellogenin genes (Vg1, Vg2, Vg3, and Vg4). Contrary to honey bees that have a single Vg ortholog as well as potentially fertile nurses, and to other ant species that lay trophic eggs,S. invictaworkers completely lack ovaries or the ability to lay eggs. This provides a unique model to investigate whether Vg duplication inS. invictawas followed by subfunctionalization to acquire non-reproductive functions and whether Vg was co-opted to regulate behavior within the worker caste. To investigate these questions, we compared the expression patterns ofS. invictaVg genes among workers from different morphological subcastes or performing different tasks. RT-qPCRs revealed higher relative expression of Vg1 in major workers compared to both medium and minor workers, and of Vg2 in major workers when compared to minor workers. Relative expression of Vg1 was also higher in carbohydrate foragers when compared to nurses and protein foragers. By contrast, the level of expression of Vg2, Vg3, and Vg4 were not significantly different among the workers performing the specific tasks. Additionally, we analyzed the relationship between the expression of the Vg genesmore »and S-hydroprene, a juvenile hormone analog. No changes in Vg expression were recorded in workers 12 h after application of the analog. Our results suggest that inS. invictathe Vg gene underwent subfunctionalization after duplication to new functions based on the expression bias observed in these data. This may suggest an alternative and still unknown function for Vg in the workers that needs to be investigated further.

    « less
  2. Abstract

    Tropical forests experience a relatively stable climate, but are not thermally uniform. The tropical forest canopy is hotter and thermally more variable than the understory. Heat stress in the canopy is expected to increase with global warming, potentially threatening its inhabitants. Here, we assess the impact of heating on the most abundant tropical canopy arthropods—ants. While foragers can escape hot branches, brood and workers inside twig nests might be unable to avoid heat stress. We examined nest choice and absconding behavior—nest evacuation in response to heat stress—of four common twig-nesting ant genera. We found that genera nesting almost exclusively in the canopy occupy smaller cavities compared toCamponotusandCrematogasterthat nest across all forest strata.Crematogasterants absconded at the lowest temperatures in heating experiments with both natural and artificial nests.Cephalotes workers were overall less likely to abscond from their nests. This is the first test of behavioral thermoregulation in tropical forest canopy ants, and it highlights different strategies and sensitivities to heat stress. Behavioral avoidance is the first line of defense against heat stress and will be crucial for small ectotherms facing increasing regional and local temperatures.

  3. Abstract

    Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1β,IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, exceptIL-6in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.

  4. Abstract

    The cyanobacteriumSynechococcus elongatusis a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation inS. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length.

  5. Abstract

    Many species have evolved alternate phenotypes, thus enabling individuals to conditionally produce phenotypes that are favorable for reproductive success. Examples of this phenomenon include sexual dimorphism, alternative reproductive strategies, and social insect castes. While the evolutionary functions and developmental mechanisms of dimorphic phenotypes have been studied extensively, little attention has focused on the evolutionary covariance between each phenotype. We extend the conceptual framework and methods of morphological integration to hypothesize that dimorphic traits tend to be less integrated between sexes or social castes. In the case of social insects, we describe results from our recent study of an ant genus in which workers have major and minor worker castes that perform different behavioral repertoires in and around the nest. In the case of birds, we describe a new analysis of a family of songbirds that exhibits plumage coloration that can differ greatly between males and females, with apparently independent changes in each sex. Ant head shape, which is highly specialized in each worker caste, was weakly integrated between worker castes, whereas thorax shape, which is more monomorphic, was tightly integrated. Similarly, in birds, we found a negative association between dimorphism and the degree of integration between sexes. We alsomore »found that integration decreased in fairy wrens (Malurus) for many feather patches that evolved greater dichromatism. Together, this suggests that the process of evolving increased dimorphism results in a decrease in integration between sexes and social castes. We speculate that once a mechanism for dimorphism evolves, that mechanism can create independent variation in one sex or caste upon which selection may act.

    « less