skip to main content

Title: Observations and Simulated Mechanisms of Elevation-Dependent Warming over the Tropical Andes
Abstract

Many mountain regions around the world are exposed to enhanced warming when compared to their surroundings, threatening key environmental services provided by mountains. Here we investigate this effect, known as elevation-dependent warming (EDW), in the Andes of Ecuador, using observations and simulations with the Weather Research and Forecasting (WRF) Model. EDW is discernible in observations of mean and maximum temperature in the Andes of Ecuador, but large uncertainties remain due to considerable data gaps in both space and time. WRF simulations of present-day (1986–2005) and future climate (RCP4.5 and RCP8.5 for 2041–60) reveal a very distinct EDW signal, with different rates of warming on the eastern and western slopes. This EDW effect is the combined result of multiple feedback mechanisms that operate on different spatial scales. Enhanced upper-tropospheric warming projects onto surface temperature on both sides of the Andes. In addition, changes in the zonal mean midtropospheric circulation lead to enhanced subsidence and warming over the western slopes at high elevation. The increased subsidence also induces drying, reduces cloudiness, and results in enhanced net surface radiation receipts, further contributing to stronger warming. Finally, the highest elevations are also affected by the snow-albedo feedback, due to significant reductions in snow more » cover by the middle of the twenty-first century. While these feedbacks are more pronounced in the high-emission scenario RCP8.5, our results indicate that high elevations in Ecuador will continue to warm at enhanced rates in the twenty-first century, regardless of emission scenario.

Significance Statement

Mountains are often projected to experience stronger warming than their surrounding lowlands going forward, a phenomenon known as elevation-dependent warming (EDW), which can threaten high-altitude ecosystems and lead to accelerated glacier retreat. We investigate the mechanisms associated with EDW in the Andes of Ecuador using both observations and model simulations for the present and the future. A combination of factors amplify warming at mountain tops, including a stronger warming high in the atmosphere, reduced cloudiness, and a reduction of snow and ice at high elevations. The latter two factors also favor enhanced absorption of sunlight, which promotes warming. The degree to which this warming is enhanced at high elevations in the future depends on the greenhouse gas emission pathway.

« less
Award ID(s):
1743738
Publication Date:
NSF-PAR ID:
10362183
Journal Name:
Journal of Climate
Volume:
35
Issue:
3
Page Range or eLocation-ID:
p. 1021-1044
ISSN:
0894-8755
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpackmore »loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation.« less
  2. Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20more »corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding.« less
  3. Abstract

    Climatic changes over the central Himalaya are critical for water resources in downstream regions where hundreds of millions of people live. Warming and drying in this region have both occurred in recent decades, but the associated meteorological factors are difficult to diagnose based on observations from unevenly distributed weather stations, reanalyses, and global climate models that poorly reproduce the orographic diurnal cycle. Here, recent trends in the summer diurnal cycle over the central Himalaya are investigated using a 36-year high-resolution dynamical downscaling. We illustrate contrasting trends over the diurnal cycle of circulation and convection over the Himalaya. In the daytime, warming of the slopes has enhanced anabatic upslope winds. At night, clearer skies have radiatively cooled the slopes, enhancing katabatic downslope winds. The enhanced upslope winds have prevented any drying over the mountains in the daytime, while the enhanced downslope winds are associated with significant nocturnal drying at high elevations. This amplification in the diurnal cycle is critical for projecting the future hydroclimate over the region’s complex terrain.

  4. Abstract Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)—known as Asia’s water tower—has triggered widespread concerns because HMA protects millions of people against water stress 1,2 . However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003–2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA’s mountains, causing persistent northward expansion of the TP’s TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020–2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream watermore »stress.« less
  5. Abstract Increasing severity of extreme heat is a hallmark of climate change. Its impacts depend on temperature but also on moisture and solar radiation, each with distinct spatial patterns and vertical profiles. Here, we consider these variables’ combined effect on extreme heat stress, as measured by the environmental stress index, using a suite of high-resolution climate simulations for historical (1980–2005) and future (2074–2099, Representative Concentration Pathway 8.5 (RCP8.5)) periods. We find that observed extreme heat stress drops off nearly linearly with elevation above a coastal zone, at a rate that is larger in more humid regions. Future projections indicate dramatic relative increases whereby the historical top 1% summer heat stress value may occur on about 25%–50% of future summer days under the RCP8.5 scenario. Heat stress increases tend to be larger at higher latitudes and in areas of greater temperature increase, although in the southern and eastern US moisture increases are nearly as important. Imprinted on top of this dominant pattern we find secondary effects of smaller heat stress increases near ocean coastlines, notably along the Pacific coast, and larger increases in mountains, notably the Sierra Nevada and southern Appalachians. This differential warming is attributable to the greater warming ofmore »land relative to ocean, and to larger temperature increases at higher elevations outweighing larger water-vapor increases at lower elevations. All together, our results aid in furthering knowledge about drivers and characteristics that shape future extreme heat stress at scales difficult to capture in global assessments.« less