skip to main content


Title: High-resolution Near-infrared Spectroscopy of a Flare around the Ultracool Dwarf vB 10
Abstract

We present high-resolution observations of a flaring event in the M8 dwarf vB 10 using the near-infrared Habitable-zone Planet Finder (HPF) spectrograph on the Hobby-Eberly Telescope. The high stability of HPF enables us to accurately subtract a vB 10 quiescent spectrum from the flare spectrum to isolate the flare contributions and study the changes in the relative energy of the Caiiinfrared triplet, several Paschen lines, the Heλ10830 triplet lines, and to select iron and magnesium lines in HPF's bandpass. Our analysis reveals the presence of a red asymmetry in the Heλ10830 triplet, which is similar to signatures of coronal rain in the Sun. Photometry of the flare derived from an acquisition camera before spectroscopic observations and the ability to extract spectra from up-the-ramp observations with the HPF infrared detector enable us to perform time-series analysis of part of the flare and provide coarse constraints on the energy and frequency of such flares. We compare this flare with historical observations of flares around vB 10 and other ultracool M dwarfs and attempt to place limits on flare-induced atmospheric mass loss for hypothetical planets around vB 10.

 
more » « less
Award ID(s):
2108493 2108801 2108512
NSF-PAR ID:
10362357
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 155
Size(s):
["Article No. 155"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST Heiλ10830 line, as well as broad and centrally reversed profiles in the spectra of the Mgiiand Ciilines observed by the IRIS satellite, has been reported. In this work, we aim to understand the physical origin of such peculiar IRIS profiles, which seem to be common of many, if not all, flares. To achieve this, we quantify the spectral properties of the IRIS Mgiiprofiles at the ribbon leading edge during four large flares and perform a detailed comparison with a grid of radiative hydrodynamic models using theRADYN+FPcode. We also studied their transition region (TR) counterparts, finding that these ribbon front locations are regions where TR emission and chromospheric evaporation are considerably weaker compared to other parts of the ribbons. Based on our comparison between the IRIS observations and modeling, our interpretation is that there are different heating regimes at play in the leading edge and the main bright part of the ribbons. More specifically, we suggest that bombardment of the chromosphere by more gradual and modest nonthermal electron energy fluxes can qualitatively explain the IRIS observations at the ribbon leading front, while stronger and more impulsive energy fluxes are required to drive chromospheric evaporation and more intense TR emission in the bright ribbon. Our results provide a possible physical origin for the peculiar behavior of the IRIS chromospheric lines in the ribbon leading edge and new constraints for the flare models.

     
    more » « less
  2. Abstract While solar flares are predominantly characterized by an intense broadband enhancement to the solar radiative output, certain spectral lines and continua will, in theory, exhibit flare-induced dimmings. Observations of transitions of orthohelium He i λ λ 10830 Å and the He i D3 lines have shown evidence of such dimming, usually followed by enhanced emission. It has been suggested that nonthermal collisional ionization of helium by an electron beam, followed by recombinations to orthohelium, is responsible for overpopulating those levels, leading to stronger absorption. However, it has not been possible observationally to preclude the possibility of overpopulating orthohelium via enhanced photoionization of He i by EUV irradiance from the flaring corona followed by recombinations. Here we present radiation hydrodynamics simulations of nonthermal electron-beam-driven flares where (1) both nonthermal collisional ionization of helium and coronal irradiance are included, and (2) only coronal irradiance is included. A grid of simulations covering a range of total energies deposited by the electron beam and a range of nonthermal electron-beam low-energy cutoff values were simulated. In order to obtain flare-induced dimming of the He i 10830 Å line, it was necessary for nonthermal collisional ionization to be present. The effect was more prominent in flares with larger low-energy cutoff values and longer lived in weaker flares and flares with a more gradual energy deposition timescale. These results demonstrate the usefulness of orthohelium line emission as a diagnostic of flare energy transport. 
    more » « less
  3. Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations. 
    more » « less
  4. Abstract

    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit Heiirecombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii]λ5008, Hβ, [Neiii]λ3870, [Oii]λλ3727, 3729, and [Nev]λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev]/[Neiii] ≡ Ne53, [Oiii]/Hβ, and [Neiii]/[Oii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudythat use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz∼ 0,z∼ 2, and 5 <z< 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.

     
    more » « less
  5. Abstract

    We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirVJ,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.

     
    more » « less