- Award ID(s):
- 1936361
- NSF-PAR ID:
- 10429628
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 912
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations.more » « less
-
Abstract We present high-resolution observations of a flaring event in the M8 dwarf vB 10 using the near-infrared Habitable-zone Planet Finder (HPF) spectrograph on the Hobby-Eberly Telescope. The high stability of HPF enables us to accurately subtract a vB 10 quiescent spectrum from the flare spectrum to isolate the flare contributions and study the changes in the relative energy of the Ca
ii infrared triplet, several Paschen lines, the Heλ 10830 triplet lines, and to select iron and magnesium lines in HPF's bandpass. Our analysis reveals the presence of a red asymmetry in the Heλ 10830 triplet, which is similar to signatures of coronal rain in the Sun. Photometry of the flare derived from an acquisition camera before spectroscopic observations and the ability to extract spectra from up-the-ramp observations with the HPF infrared detector enable us to perform time-series analysis of part of the flare and provide coarse constraints on the energy and frequency of such flares. We compare this flare with historical observations of flares around vB 10 and other ultracool M dwarfs and attempt to place limits on flare-induced atmospheric mass loss for hypothetical planets around vB 10. -
Abstract Solar flare ribbon fronts appear ahead of the bright structures that normally characterize solar flares, and can persist for an extended period of time in spatially localized patches before transitioning to “regular” bright ribbons. They likely represent the initial onset of flare energy deposition into the chromosphere. Chromospheric spectra (e.g., He
i 10830 Å and the Mgii near-UV lines) from ribbon fronts exhibit properties rather different to typical flare behavior. In prior numerical modeling efforts we were unable to reproduce the long lifetime of ribbon fronts. Here we present a series of numerical experiments that are rather simple but which have important implications. We inject a very low flux of nonthermal electrons (F = 5 × 108erg s−1cm−2) into the chromosphere for 100 s before ramping up to standard flare energy fluxes (F = 1010−11erg s−1cm−2). Synthetic spectra not only sustained their ribbon-front-like properties for significantly longer: in the case of harder nonthermal electron spectra, the ribbon front behavior persisted for the entirety of this weak-heating phase. Lengthening or shortening the duration of the weak-heating phase commensurately lengthened or shortened the ribbon front lifetimes. Ribbon fronts transitioned to regular bright ribbons when the upper chromosphere became sufficiently hot and dense, which happened faster for softer nonthermal electron spectra. Thus, the lifetime of flare ribbon fronts are a direct measure of the duration over which a relatively low flux of high-energy electrons precipitates to the chromosphere prior to the bombardment of a much larger energy flux. -
Abstract Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST He
i λ 10830 line, as well as broad and centrally reversed profiles in the spectra of the Mgii and Cii lines observed by the IRIS satellite, has been reported. In this work, we aim to understand the physical origin of such peculiar IRIS profiles, which seem to be common of many, if not all, flares. To achieve this, we quantify the spectral properties of the IRIS Mgii profiles at the ribbon leading edge during four large flares and perform a detailed comparison with a grid of radiative hydrodynamic models using theRADYN+FP code. We also studied their transition region (TR) counterparts, finding that these ribbon front locations are regions where TR emission and chromospheric evaporation are considerably weaker compared to other parts of the ribbons. Based on our comparison between the IRIS observations and modeling, our interpretation is that there are different heating regimes at play in the leading edge and the main bright part of the ribbons. More specifically, we suggest that bombardment of the chromosphere by more gradual and modest nonthermal electron energy fluxes can qualitatively explain the IRIS observations at the ribbon leading front, while stronger and more impulsive energy fluxes are required to drive chromospheric evaporation and more intense TR emission in the bright ribbon. Our results provide a possible physical origin for the peculiar behavior of the IRIS chromospheric lines in the ribbon leading edge and new constraints for the flare models. -
Abstract We have gathered optical-region spectra, derived model atmosphere parameters, and computed elemental abundances for 15 red giant stars in the open cluster NGC 7789. We focus on the light element group CNOLi that provides clues to evolutionary changes associated with internal fusion events and chemical mixing. We confirm and extend an early report that NGC 7789 stars 193 and 301 have anomalously large Li abundances, and that these values are apparently unconnected to any other elements’ abundances in these stars. A companion study of He
i λ 10830 lines in both field stars and cluster members shows that star 301 has a strong He feature while star 193 does not. Possible explanations for the large Li abundances of these stars include helium flash-induced mixing events and binary interactions at some past or present times. In either case an internal eruption of energy could cause fresh synthesis of lithium via the Cameron-Fowler Berillyum transport mechanism. Rapid transport of lithium to the outer layers may have created significant chromospheric transient disturbances, producing enough helium ionization to allow for the strongλ 10830 absorption in star 301.