Flow over a surface can be stratified by imposing a fixed mean vertical temperature (density) gradient profile throughout or via cooling at the surface. These distinct mechanisms can act simultaneously to establish a stable stratification in a flow. Here, we perform a series of direct numerical simulations of open-channel flows to study adaptation of a neutrally stratified turbulent flow under the combined or independent action of the aforementioned mechanisms. We force the fully developed flow with a constant mass flow rate. This flow forcing technique enables us to keep the bulk Reynolds number constant throughout our investigation and avoid complications arising from the acceleration of the bulk flow if a constant pressure gradient approach were to be adopted to force the flow instead. When both stratification mechanisms are active, the dimensionless stratification perturbation number emerges as an external flow control parameter, in addition to the Reynolds, Froude, and Prandtl numbers. We demonstrate that significant deviations from the Monin–Obukhov similarity formulation are possible when both types of stratification mechanisms are active within an otherwise weakly stable flow, even when the flux Richardson number is well below 0.2. An extended version of the similarity theory due to Zilitinkevich and Calanca shows more »
- Award ID(s):
- 1936445
- Publication Date:
- NSF-PAR ID:
- 10362370
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 79
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 205-225
- ISSN:
- 0022-4928
- Publisher:
- American Meteorological Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Direct numerical simulations are performed to compare the evolution of turbulent stratified shear layers with different density gradient profiles at a high Reynolds number. The density profiles include uniform stratification, two-layer hyperbolic tangent profile and a composite of these two profiles. All profiles have the same initial bulk Richardson number ( $$Ri_{b,0}$$ R i b , 0 ); however, the minimum gradient Richardson number and the distribution of density gradient across the shear layer are varied among the cases. The objective of the study is to provide a comparative analysis of the evolution of the shear layers in term of shear layer growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz billows, the transition to turbulence by secondary instabilities followed by the decay of turbulence. Comparison among the cases reveals that the amount of turbulent mixing varies with the density gradient distribution inside the shear layer. The minimum gradient Richardson number and the initial bulk Richardson number do not correlate well with the integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for fixed $$Ri_{b,0}$$ R i b ,more »
-
Direct numerical simulations are performed to investigate a stratified shear layer at high Reynolds number ( $Re$ ) in a study where the Richardson number ( $Ri$ ) is varied among cases. Unlike previous work on a two-layer configuration in which the shear layer resides between two layers with constant density, an unbounded fluid with uniform stratification is considered here. The evolution of the shear layer includes a primary Kelvin–Helmholtz shear instability followed by a wide range of secondary shear and convective instabilities, similar to the two-layer configuration. During transition to turbulence, the shear layers at low $Ri$ exhibit a period of thickness contraction (not observed at lower $Re$ ) when the momentum and buoyancy fluxes are counter-gradient. The behaviour in the turbulent regime is significantly different from the case with a two-layer density profile. The transition layers, which are zones with elevated shear and stratification that form at the shear-layer edges, are stronger and also able to support a significant internal wave flux. After the shear layer becomes turbulent, mixing in the transition layers is shown to be more efficient than that which develops in the centre of the shear layer. Overall, the cumulative mixing efficiency ( $E^C$ )more »
-
Abstract In this study we examined a data set of nearly two‐year collection and investigated the effects of low‐level jets (LLJ) on near‐surface turbulence, especially wind direction changes, in the nocturnal boundary layer. Typically, nocturnal boundary layer is thermally stratified and stable. When wind profiles exhibit low gradient (in the absence of LLJ), it is characterized by very weak turbulence and very large, abrupt, but intermittent wind direction changes (∆WD) in the layers near the surface. In contrast, presence of LLJs can cause dramatic changes through inducing wind velocity shears, enhancing vertical mixing, and weakening the thermal stratification underneath. Ultimately, bulk Richardson number (
R b) is reduced and weakly stable conditions prevail, leading to active turbulence, close coupling across the layers between the LLJ height and ground surface, relatively large vertical momentum and sensible heat fluxes, and suppressed ∆WD values.R bcan be a useful parameter in assessing turbulence strength and ∆WD as well. The dependence of ∆WD onR bappears to be well defined under weakly stable conditions (0.0 <R b ≤ 0.25) and ∆WD is generally confined to small values. However, the relationship between ΔWD andR bbreaks whenR bincreases, especiallyR b > 1.0 (very stable conditions), under which ΔWD varies across a very wide range and the potential for large ΔWD increasesmore » -
Since the generation of green and clean renewable energy is a major concern in the modern era, solar energy conversion technologies such as the solar chimney power plant are gaining more attention. In order to accurately predict the performance of these power plants, hydrodynamic instabilities that can lead to large-scale coherent structures which affect the mean flow, have to be identified and their onset has to be predicted accurately. The thermal stratification of the collector flow (resulting from the temperature difference between the heated bottom surface and the cooled top surface) together with the opposing gravity can lead to buoyancy-driven instability. As the flow accelerates inside the collector, the Reynolds number can get large enough for viscous (Tollmien-Schlichting) instability to occur. A new highly accurate compact finite difference Navier-Stokes code in cylindrical coordinates has been developed for the spatial stability analysis of such radial flows. The new code was validated for a square channel flow. Stability results for different stable and unstable Reynolds/Rayleigh number combinations were in good agreement with temporal stability simulations as well as linear stability theory. To investigate the radial flow effect, spatial stability simulations were then carried out for a computational domain with constant streamwise extentmore »
-
Stably stratified roughness sublayer flows are ubiquitous yet remain difficult to represent in models and to interpret using field experiments. Here, continuous high‐frequency potential temperature profiles from the forest floor up to 6.5 times the canopy height observed with distributed temperature sensing (DTS) are used to link eddy topology to roughness sublayer stability correction functions and coupling between air layers within and above the canopy. The experiments are conducted at two forest stands classified as hydrodynamically sparse and dense. Near‐continuous profiles of eddy sizes (length scales) and effective mixing lengths for heat are derived from the observed profiles using a novel conditional sampling approach. The approach utilizes potential temperature isoline fluctuations from a statically stable background state. The transport of potential temperature by an observed eddy is assumed to be conserved (adiabatic movement) and we assume that irreversible heat exchange between the eddy and the surrounding background occurs along the (vertical) periphery of the eddy. This assumption is analogous to Prandtl's mixing‐length concept, where momentum is transported rapidly vertically and then equilibrated with the local mean velocity gradient. A distinct dependence of the derived length scales on background stratification, height above ground, and canopy characteristics emerges from the observed profiles.more »