skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black hole–galaxy scaling relations in FIRE: the importance of black hole location and mergers
ABSTRACT The concurrent growth of supermassive black holes (SMBHs) and their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it can also be explained by alternative SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (MassiveFIRE) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modelled in post-processing with different black hole accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque-driven accretion (GTDA) model agree with observations at low redshift without the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous theoretical results. In particular, SMBHs are undermassive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach M* ∼ 1010M⊙. We analyse and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the SMBH location and the efficiency of SMBH merging, particularly in low-mass systems. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.  more » « less
Award ID(s):
2009687 2108230 1715216 2108318 2108314 1715101
PAR ID:
10362447
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 506-535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Observations of massive galaxies at low redshift have revealed approximately linear scaling relations between the mass of a supermassive black hole (SMBH) and properties of its host galaxy. How these scaling relations evolve with redshift and whether they extend to lower-mass galaxies, however, remain open questions. Recent galaxy formation simulations predict a delayed, or ‘two-phase,’ growth of SMBHs: slow, highly intermittent BH growth due to repeated gas ejection by stellar feedback in low-mass galaxies, followed by more sustained gas accretion that eventually brings BHs on to the local scaling relations. The predicted two-phase growth implies a steep increase, or ‘kink,’ in BH-galaxy scaling relations at a stellar mass $$\rm {M}_{*}\sim 5\times 10^{10}$$ M⊙. We develop a parametric, semi-analytic model to compare different SMBH growth models against observations of the quasar luminosity function (QLF) at z ∼ 0.5−4. We compare models in which the relation between SMBH mass and galaxy mass is purely linear versus two-phase models. The models are anchored to the observed galaxy stellar mass function, and the BH mass functions at different redshifts are consistently connected by the accretion rates contributing to the QLF. The best fits suggest that two-phase evolution is significantly preferred by the QLF data over a purely linear scaling relation. Moreover, when the model parameters are left free, the two-phase model fits imply a transition mass consistent with that predicted by simulations. Our analysis motivates further observational tests, including measurements of BH masses and active galactic nuclei activity at the low-mass end, which could more directly test two-phase SMBH growth. 
    more » « less
  2. ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete. 
    more » « less
  3. ABSTRACT Feedback from accreting supermassive black holes (SMBHs) is thought to be a primary driver of quenching in massive galaxies, but how to best implement SMBH physics into galaxy formation simulations remains ambiguous. As part of the Feedback in Realistic Environments (FIRE) project, we explore the effects of different modelling choices for SMBH accretion and feedback in a suite of ∼500 cosmological zoom-in simulations across a wide range of halo mass (1010–1013 M⊙). Within the suite, we vary the numerical schemes for BH accretion and feedback, accretion efficiency, and the strength of mechanical, radiative, and cosmic ray feedback independently. We then compare the outcomes to observed galaxy scaling relations. We find several models satisfying observational constraints for which the energetics in different feedback channels are physically plausible. Interestingly, cosmic rays accelerated by SMBHs play an important role in many plausible models. However, it is non-trivial to reproduce scaling relations across halo mass, and many model variations produce qualitatively incorrect results regardless of parameter choices. The growth of stellar and BH mass are closely related: for example, overmassive BHs tend to overquench galaxies. BH mass is most strongly affected by the choice of accretion efficiency in high-mass haloes, but by feedback efficiency in low-mass haloes. The amount of star formation suppression by SMBH feedback in low-mass haloes is determined primarily by the time-integrated feedback energy. For massive galaxies, the ‘responsiveness’ of a model (how quickly and powerfully the BH responds to gas available for accretion) is an additional important factor for quenching. 
    more » « less
  4. ABSTRACT The correlations between supermassive black holes (SMBHs) and their host galaxies still defy our understanding from both the observational and theoretical perspectives. Here, we perform pairwise residual analysis on the latest sample of local inactive galaxies with a uniform calibration of their photometric properties and with dynamically measured masses of their central SMBHs. The residuals reveal that stellar velocity dispersion $$\sigma$$ and, possibly host dark matter halo mass $$M_{\rm halo}$$, appear as the galactic properties most correlated with SMBH mass, with a secondary (weaker) correlation with spheroidal (bulge) mass, as also corroborated by additional machine learning tests. These findings may favour energetic/kinetic feedback from active galactic nuclei (AGNs) as the main driver in shaping SMBH scaling relations. Two state-of-the-art hydrodynamic simulations, inclusive of kinetic AGN feedback, are able to broadly capture the mean trends observed in the residuals, although they tend to either favour $$M_{\rm sph}$$ as the most fundamental property, or generate too flat residuals. Increasing AGN feedback kinetic output does not improve the comparison with the data. In the Appendix, we also show that the galaxies with dynamically measured SMBHs are biased high in $$\sigma$$ at fixed luminosity with respect to the full sample of local galaxies, proving that this bias is not a by-product of stellar mass discrepancies. Overall, our results suggest that probing the SMBH–galaxy scaling relations in terms of total stellar mass alone may induce biases, and that either current data sets are incomplete, and/or that more insightful modelling is required to fully reproduce observations. 
    more » « less
  5. Abstract Tidal disruption events (TDEs) offer a unique probe of supermassive black hole (SMBH) demographics, but their observed rates remain difficult to reconcile with standard single-SMBH models. In this work, we use simulations of SMBH binaries, including the combined effects of eccentric Kozai–Lidov oscillations and two-body relaxation, to explore how TDE rates scale with SMBH mass and redshift. We find that binary systems exhibit increasing TDE rates with mass, in contrast to the declining trend expected for single SMBHs. These binary-driven rates match those observed in post-starburst galaxies, suggesting that a subset of TDE hosts may contain SMBH binaries. TDE light curves in some massive galaxies exhibit unexpectedly short durations, suggesting that the disrupting SMBH may be less massive than implied by host galaxy scaling relations, consistent with disruptions by the less massive black hole in a binary. By convolving our mass-dependent rates with the SMBH mass function, we predict redshift-dependent TDE rates, which we show can be used to constrain the SMBH binary fraction. Our results provide a testable framework for interpreting TDE demographics in upcoming wide-field surveys such as Legacy Survey of Space and Time and Roman. 
    more » « less