skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Tidal Disruption Event Demographics in Supermassive Black Hole Binaries over Cosmic Times
Abstract Tidal disruption events (TDEs) offer a unique probe of supermassive black hole (SMBH) demographics, but their observed rates remain difficult to reconcile with standard single-SMBH models. In this work, we use simulations of SMBH binaries, including the combined effects of eccentric Kozai–Lidov oscillations and two-body relaxation, to explore how TDE rates scale with SMBH mass and redshift. We find that binary systems exhibit increasing TDE rates with mass, in contrast to the declining trend expected for single SMBHs. These binary-driven rates match those observed in post-starburst galaxies, suggesting that a subset of TDE hosts may contain SMBH binaries. TDE light curves in some massive galaxies exhibit unexpectedly short durations, suggesting that the disrupting SMBH may be less massive than implied by host galaxy scaling relations, consistent with disruptions by the less massive black hole in a binary. By convolving our mass-dependent rates with the SMBH mass function, we predict redshift-dependent TDE rates, which we show can be used to constrain the SMBH binary fraction. Our results provide a testable framework for interpreting TDE demographics in upcoming wide-field surveys such as Legacy Survey of Space and Time and Roman.  more » « less
Award ID(s):
2206428
PAR ID:
10646809
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
992
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamical perturbations from supermassive black hole (SMBH) binaries can increase the rates of tidal disruption events (TDEs). However, most previous work focuses on TDEs from the heavier black hole in the SMBH binary (SMBHB) system. In this work, we focus on the lighter black holes in SMBHB systems and show that they can experience a similarly dramatic increase in their TDE rate due to perturbations from a more massive companion. While the increase in TDEs around the more massive black hole is mostly due to chaotic orbital perturbations, we find that, around the smaller black hole, the eccentric Kozai–Lidov mechanism is dominant and capable of producing a comparably large number of TDEs. In this scenario, the mass derived from the light curve and spectra of TDEs caused by the lighter SMBH companion is expected to be significantly smaller than the SMBH mass estimated from galaxy scaling relations, which are dominated by the more massive companion. This apparent inconsistency can help find SMBHB candidates that are not currently accreting as active galactic nuclei and that are at separations too small for them to be resolved as two distinct sources. In the most extreme cases, these TDEs provide us with the exciting opportunity to study SMBHBs in galaxies where the primary SMBH is too massive to disrupt Sun-like stars. 
    more » « less
  2. Abstract In 2023, the Pulsar Timing Array Collaborations announced the discovery of a gravitational wave background (GWB), predominantly attributed to supermassive black hole binary (SMBHB) mergers. However, the detected GWB is several times stronger than the default value expected from galactic observations at low and moderate redshifts. Recent findings by the James Webb Space Telescope have unveiled a substantial number of massive, high-redshift galaxies, suggesting more massive SMBHB mergers at these early epochs. Motivated by these findings, we propose an “early merger” model that complements the standard merger statistics by incorporating these early, massive galaxies. We compare the early and standard “late merger” models, which assume peak merger rates in the local Universe, and match both merger models to the currently detected GWB. Our analysis shows that the early merger model has a significantly lower detection probability for single binaries and predicts a ∼30% likelihood that the first detectable single source will be highly redshifted and remarkably massive with rapid frequency evolution. In contrast, the late merger model predicts a nearly monochromatic first source at low redshift. The future confirmation of an enhanced population of massive high-redshift galaxies and the detection of fast-evolving binaries would strongly support the early merger model, offering significant insights into the evolution of galaxies and SMBHs. 
    more » « less
  3. ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete. 
    more » « less
  4. ABSTRACT Mergers of binaries comprising compact objects can give rise to explosive transient events, heralding the birth of exotic objects that cannot be formed through single-star evolution. Using a large number of direct N-body simulations, we explore the possibility that a white dwarf (WD) is dynamically driven to tidal disruption by a stellar-mass black hole (BH) as a consequence of the joint effects of gravitational wave (GW) emission and Lidov–Kozai oscillations imposed by the tidal field of an outer tertiary companion orbiting the inner BH–WD binary. We explore the sensitivity of our results to the distributions of natal kick velocities imparted to the BH and WD upon formation, adiabatic mass loss, semimajor axes and eccentricities of the triples, and stellar-mass ratios. We find rates of WD–tidal disruption events (TDEs) in the range 1.2 × 10−3 − 1.4 Gpc−3 yr−1 for z ≤ 0.1, rarer than stellar TDEs in triples by a factor of ∼3–30. The uncertainty in the TDE rates may be greatly reduced in the future using GW observations of Galactic binaries and triples with LISA. WD–TDEs may give rise to high-energy X-ray or gamma-ray transients of duration similar to long gamma-ray bursts but lacking the signatures of a core-collapse supernova, while being accompanied by a supernova-like optical transient that lasts for only days. WD–BH and WD–NS binaries will also emit GWs in the LISA band before the TDE. The discovery and identification of triple-induced WD–TDE events by future time domain surveys and/or GWs could enable the study of the demographics of BHs in nearby galaxies. 
    more » « less
  5. The merging black hole binaries detected by the LIGO-Virgo-KAGRA (LVK) gravitational-wave observatories may help us shed light on how such binaries form. In addition, these detections can help us probe the hypothesized primordial black holes, a candidate for the observed abundance of dark matter. In this work, we study the black-hole mass distribution obtained from the LVK binary black hole merger events. In particular, we study the primary mass 𝑚1-distribution of the observed black hole binaries, and also the secondary to primary mass ratio 𝑞 =𝑚2/𝑚1 distribution. We obtain those distributions by first associating a skewed normal distribution to each event detected with a signal to noise ratio (SNR)>8 and then summing all such distributions. We also sample black hole binaries from two separate populations of merging binaries to which we associate a redshift from the redshift distribution. One of these is a stellar-origin population that follows a mass-distribution similar to the zero-age mass function of stars. The second population of black holes follows a Gaussian mass-distribution. Such a distribution could approximate a population of black hole binaries formed from earlier black hole mergers in dense stellar environments, or binaries of primordial black holes among other astrophysical processes. For those populations, we evaluate the number of detectable events and fit their combination to the LVK observations. In our work, we assume that stellar-origin binary black holes follow a similar mass-distribution to that of the initial mass-function of stars. We simulate a wide range of stellar-origin black-hole mass distributions. In agreement with the binary black hole merger rates-analysis of the LVK collaboration, we find that studying the observed LVK events can be fitted better by the combination of such a stellar-origin mass distribution and a Gaussian distribution, than by the stellar-origin mass distribution alone. As we demonstrate with some simple examples, our methodology allows for rapid testing of potential theoretical models for the binary black hole mergers to the observed events by LVK. 
    more » « less