The outbreak of coronavirus disease 2019 (COVID-19) has led to significant challenges for schools and communities during the pandemic, requiring policy makers to ensure both safety and operational feasibility. In this paper, we develop mixed-integer programming models and simulation tools to redesign routes and bus schedules for operating a real university campus bus system during the COVID-19 pandemic. We propose a hub-and-spoke design and utilize real data of student activities to identify hub locations and bus stops to be used in the new routes. To reduce disease transmission via expiratory aerosol, we design new bus routes that are shorter than 15 minutes to travel and operate using at most 50% seat capacity and the same number of buses before the pandemic. We sample a variety of scenarios that cover variations of peak demand, social distancing requirements, and bus breakdowns to demonstrate the system resiliency of the new routes and schedules via simulation. The new bus routes were implemented and used during the academic year 2020–2021 to ensure social distancing and short travel time. Our approach can be generalized to redesign public transit systems with a social distancing requirement to reduce passengers’ infection risk. History: This paper was refereed. This article has been selected for inclusion in the Special Issue on Analytics Remedies to COVID-19. Funding: This work was supported by the National Science Foundation [Grant CMMI-2041745] and the University of Michigan, College of Engineering.
more »
« less
Effectiveness of alternative semester break schedules on reducing COVID-19 incidence on college campuses
Abstract Despite COVID-19 vaccination programs, the threat of new SARS-CoV-2 strains and continuing pockets of transmission persists. While many U.S. universities replaced their traditional nine-day spring 2021 break with multiple breaks of shorter duration, the effects these schedules have on reducing COVID-19 incidence remains unclear. The main objective of this study is to quantify the impact of alternative break schedules on cumulative COVID-19 incidence on university campuses. Using student mobility data and Monte Carlo simulations of returning infectious student size, we developed a compartmental susceptible-exposed-infectious-asymptomatic-recovered (SEIAR) model to simulate transmission dynamics among university students. As a case study, four alternative spring break schedules were derived from a sample of universities and evaluated. Across alternative multi-break schedules, the median percent reduction of total semester COVID-19 incidence, relative to a traditional nine-day break, ranged from 2 to 4% (for 2% travel destination prevalence) and 8–16% (for 10% travel destination prevalence). The maximum percent reduction from an alternate break schedule was estimated to be 37.6%. Simulation results show that adjusting academic calendars to limit student travel can reduce disease burden. Insights gleaned from our simulations could inform policies regarding appropriate planning of schedules for upcoming semesters upon returning to in-person teaching modalities.
more »
« less
- Award ID(s):
- 1951793
- PAR ID:
- 10362532
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic is extraordinary, but many ordinary events have contributed to its becoming and persistence. Here, we argue that the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which has radically altered day-to-day life for people across the globe, was an inevitability of contemporary human ecology, presaged by spillovers past. We show the ways in which the emergence of this virus reiterates other infectious disease crises, from its origin via habitat encroachment and animal use by humans to its evolution of troublesome features, and we spotlight a long-running crisis of inequitable infectious disease incidence and death. We conclude by describing aspects of SARS-CoV-2 and the COVID-19 pandemic that present opportunities for disease control: spaces for intervention in infection and recovery that reduce transmission and impact. There are no more “before times”; therefore, we encourage embracing a future using old mitigation tactics and government support for ongoing disease control.more » « less
-
Alam, Mumtaz (Ed.)When COVID-19 was first introduced to the United States, state and local governments enacted a variety of policies intended to mitigate the virulence of the epidemic. At the time, the most effective measures to prevent the spread of COVID-19 included stay-at-home orders, closing of nonessential businesses, and mask mandates. Although it was well known that regions with high population density and cold climates were at the highest risk for disease spread, rural counties that are economically reliant on tourism were incentivized to enact fewer precautions against COVID-19. The uncertainty of the COVID-19 pandemic, the multiple policies to reduce transmission, and the changes in outdoor recreation behavior had a significant impact on rural tourism destinations and management of protected spaces. We utilize fine-scale incidence and demographic data to study the relationship between local economic and political concerns, COVID-19 mitigation measures, and the subsequent severity of outbreaks throughout the continental United States. We also present results from an online survey that measured travel behavior, health risk perceptions, knowledge and experience with COVID-19, and evaluation of destination attributes by 407 out-of-state visitors who traveled to Maine from 2020 to 2021. We synthesize this research to present a narrative on how perceptions of COVID-19 risk and public perceptions of rural tourism put certain communities at greater risk of illness throughout 2020. This research could inform future rural destination management and public health policies to help reduce negative socioeconomic, health and environmental impacts of pandemic-derived changes in travel and outdoor recreation behavior.more » « less
-
Miller, Eva (Ed.)COVID-19 is a continuing global pandemic causing significant changes and modifications in the ways we teach and learn here in the U.S as well as around the world. Most universities, faculty members, and students modified their learning system by incorporating significant online or mixed learning methods/modes to reduce in person contact time and to reduce the spread of the virus. Universities, faculty and students were challenged as they adapted to new learning modules, strategies and approaches. This adaption started in the Spring of 2020 and has continued to date through the Spring of 2022. The main objective of this project was to investigate faculty perception of STEM student experiences and behavior during the Fall 2020 semester as compared to the Spring 2020 semester as COVID-19 impacts were prolonged. Through a qualitative methodology of zoom interviews administered to 32 STEM faculty members across six U.S. Universities nationwide and a theming scheme, the opinion and narratives of these faculty members were garnered in a round one and round two sets of interviews, in Summer 2020 and then in Spring 2021 (following the semesters of interest). Some of the main new themes that were detected in faculty interviews during the Fall 2020 semester and which reflect faculty perceptions are represented as follow: COVID-19 impact on student and faculty motivation, COVID-19 impacts on labs and experiential learning, COVID-19 impact on mental health, COVID-19 impact on STEM students' involvement in STEM experiential learning opportunities and research. Other previous themes detected and which are revisited to analyze major differences with those themes obtained during the Spring 2020 are presented and not limited to: extra efforts from professors, student cheating behavior, cheating factors and prevention, student behavioral and performance changes, student struggles and challenges, University response and efforts to the COVID-19 pandemic. We explored the differences in these themes between the semesters to look at noticed adaptations and modifications. Presented will also be recommendations to improve student and faculty motivation along with strategies to enhance the student learning experience during the COVID-19 pandemic. We report on common findings and suggest future strategies.more » « less
-
Unequal Opportunity Spreaders: Higher COVID-19 Deaths with Later School Closure in the United Statesnull (Ed.)Mixed evidence on the relationship between school closure and COVID-19 prevalence could reflect focus on large-scale levels of geography, limited ability to address endogeneity, and demographic variation. Using county-level Centers for Disease Control and Prevention (CDC) COVID-19 data through June 15, 2020, two matching strategies address potential heterogeneity: nearest geographic neighbor and propensity scores. Within nearest neighboring pairs in different states with different school closure timing, each additional day from a county’s first case until state-ordered school closure is related to 1.5 to 2.4 percent higher cumulative COVID-19 deaths per capita (1,227–1,972 deaths for a county with median population and deaths/capita). Results are consistent using propensity score matching, COVID-19 data from two alternative sources, and additional sensitivity analyses. School closure is more strongly related to COVID-19 deaths in counties with a high concentration of Black or poor residents, suggesting schools play an unequal role in transmission and earlier school closure is related to fewer lives lost in disadvantaged counties.more » « less
An official website of the United States government
