skip to main content


Title: How Consistent Are Estimates of Roughness Parameters on a Rough Coral Reef?
Abstract

Coral reefs are hydrodynamically rough, creating turbulent boundary layers that transport and mix various scalars that impact reef processes and also can be used to monitor reef health. Often reef boundary layer characteristics derived from a single instrument are assumed to accurately represent the study site. This approach relies on two assumptions: first, that the boundary layer is relatively homogeneous across the area of interest, and second, that two instruments displaced in space or with different spatiotemporal resolution would produce similar results when sampling the same flow. We deployed four velocimeters over a 15 × 20 m reef at 10 m depth in the Chagos Archipelago. The site had a 1 m tidal range, and waves were primarily locally generated wind waves withHrms< 0.5 m. Depth‐averaged currents were typically 0.2 m/s. Friction velocities derived directly from Reynolds stress measurements by fitting the law of the wall show agreement between instruments (pairwise coefficients of determinationR2ranged from 0.53 to 0.86). Thus, the boundary layer appears to be spatially homogeneous, at least at the scale of our array, and it appears that in the present case friction velocities from one instrument are indeed generally representative of the site. We calculate drag coefficients using curve‐fitting and Structure‐from‐Motion photogrammetry, and while we find general agreement between estimates one instrument in particular produces drag coefficients an order of magnitude larger in comparison. Hence, some variability between instruments was observed, notably when high‐resolution instruments measured localized flow features.

 
more » « less
Award ID(s):
1948189
NSF-PAR ID:
10362635
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
12
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shallow dynamic flows are very important processes in environmental systems, yet they are notoriously difficult to measure. For example, on coral reefs, shallow flows over the reef crest typically range from 0 to 1 m depth and velocity up to 1–2 m s−1including oscillatory motion of waves. To directly measure depth and velocity in this challenging environment, we retrofitted a vertical acoustic Doppler current profiler (ADCP, Teledyne, RDI) designed for streams into a new shallow water acoustic Doppler current profiler system (SW‐ADCP) to expand memory and power limitations and allow for deployment in wave‐dominated environments. We captured variations in shallow reef crest depth and flow over a period of 3 weeks in the reef/lagoon system of Ofu Island, American Samoa. The new SW‐ADCPs recorded water depth and three‐dimensional velocity in 3 cm bins every 3 s. We then used velocity profiles to estimate volumetric flow and drag coefficients and verified these estimates using boundary layer theory. We observe that the mean velocity profile is well approximated by a log‐layer formulation withz0of 3.5 cm, despite the shallow depths, strong flows, and breaking waves. Our observations validated the use of SW‐ADCPs as a tool for measuring flows in shallow (0.1–1 m), dynamic coastal marine environments.

     
    more » « less
  2. Abstract

    The effect of hydraulic resistance on the downstream evolution of the water surface profilehin a sloping channel covered by a uniform dense rod canopy following the instantaneous collapse of a dam was examined using flume experiments. Near the head of the advancing wavefront, wherehmeets the rods, the conventional picture of a turbulent boundary layer was contrasted to a distributed drag force representation. The details of the boundary layer around the rod and any interferences between rods were lumped into a drag coefficientCd. The study demonstrated the following: In the absence of a canopy, the Ritter solution agreed well with the measurements. When the canopy was represented by an equivalent wall friction as common when employing Manning's formula with constant roughness, it was possible to match the measured wavefront speed but not the precise shape of the water surface profile. However, upon adopting a distributed drag force with a constantCd, the agreement between measured and modeledhwas quite satisfactory at all positions and times. The measurements and model calculations suggested that the shape ofhnear the wavefront was quasilinear with longitudinal distance for a constantCd. The computed constantCd(≈0.4) was surprisingly much smaller than theCd(≈1) reported in uniform flow experiments with staggered cylinders for the same element Reynolds number. This finding suggested that drag reduction mechanisms associated with unsteadiness, nonuniformity, transient waves, and other flow disturbances were more likely to play a role when compared to conventional sheltering effects.

     
    more » « less
  3. Abstract

    We report direct measurement of drag forces due to tidal flow over a submerged seagrass bed in Ngeseksau Reef, Koror State, Republic of Palau. In our study, drag is computed using an array of high‐resolution pressure measurements, from which values of the drag coefficients,CD, referenced to measured depth‐averaged velocities,V, were inferred. Reflecting the fact that seagrass blades deflect in the presence of flow, we find thatCDis O(1) when flows are weak and tends toward a value of 0.03 at the highest velocities, behavior that is consistent with existing theory for canopy flows with flexible canopy elements. A limited subset of velocity profiles obey the law of the wall, producing values of shear velocity that, while noisy, broadly agree with values inferred from the pressure measurements.

     
    more » « less
  4. Abstract

    This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in coastal flows where depth variations and bottom drag are important. The focus is on the effects of nongeostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability properties against numerical model calculations, for experiments designed to isolate the individual effects and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the Eady–Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to favor converting energy back to the mean, thus having limited utility over steep slopes.

     
    more » « less
  5. Abstract

    Flow separation has been observed and studied in sinuous laboratory channels and natural meanders, but the effects of flow separation on along‐channel drag are not well understood. Motivated by observations of large drag coefficients from a shallow, sinuous estuary, we built idealized numerical models representative of that system. We found that flow separation in tidal channels with curvature can create form drag that increases the total drag to more than twice that from bottom friction alone. In the momentum budget, the pressure gradient is balanced by the combined effects of bottom friction and form drag, which is calculated directly. The effective increase in total drag coefficient depends on two geometric parameters: dimensionless water depth and bend sharpness, quantified as the bend radius of curvature to channel width ratio. We introduce a theoretical boundary layer separation model to explain this parameter dependence and to predict flow separation and the increased drag. The drag coefficient can increase by a factor of 2–7 in “sharp” and “deep” sinuous channels where flow separation is most likely. Flow separation also enhances energy dissipation due to increased velocities in bends, resulting in greater loss of tidal energy and weakened stratification. Flow separation and the associated drag increase are expected to be more common in meanders of tidal channels than rivers where point bars that inhibit flow separation are more commonly found. The increased drag due to flow separation reduces tidal amplitude and affects velocity phasing along the estuary and could result in morphological feedbacks.

     
    more » « less