skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Psychological Measurement in the Information Age: Machine-Learned Computational Models
Psychological science can benefit from and contribute to emerging approaches from the computing and information sciences driven by the availability of real-world data and advances in sensing and computing. We focus on one such approach, machine-learned computational models (MLCMs)—computer programs learned from data, typically with human supervision. We introduce MLCMs and discuss how they contrast with traditional computational models and assessment in the psychological sciences. Examples of MLCMs from cognitive and affective science, neuroscience, education, organizational psychology, and personality and social psychology are provided. We consider the accuracy and generalizability of MLCM-based measures, cautioning researchers to consider the underlying context and intended use when interpreting their performance. We conclude that in addition to known data privacy and security concerns, the use of MLCMs entails a reconceptualization of fairness, bias, interpretability, and responsible use.  more » « less
Award ID(s):
1745442 1920510 1928612 1735793 1921087 2019805
PAR ID:
10362864
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Current Directions in Psychological Science
Volume:
31
Issue:
1
ISSN:
0963-7214
Format(s):
Medium: X Size: p. 76-87
Size(s):
p. 76-87
Sponsoring Org:
National Science Foundation
More Like this
  1. Data preprocessing is an integral step prior to analyzing data in psychological science, with implications for its potentially guiding policy. This article reports how psychological researchers address data preprocessing or quality concerns, with a focus on aberrant responses and missing data in self-report measures. 240 articles were sampled from four journals: Psychological Science, Journal of Personality and Social Psychology, Developmental Psychology, and Abnormal Psychology from 2012 to 2018. Nearly half of the studies did not report any missing data treatment (111/240; 46.25%), and if they did, the most common approach was listwise deletion (71/240; 29.6%). Studies that remove data due to missingness removed, on average, 12% of the sample. Likewise, most studies do not report any aberrant responses (194/240; 80%), but if they did, they classified 4% of the sample as suspect. Most studies are either not transparent enough about their data preprocessing steps or may be leveraging suboptimal procedures. Recommendations can improve transparency and data quality. 
    more » « less
  2. Neuroscientists are increasingly relying on parallel and distributed computing resources for analysis and visualization of their neuron simulations. This requires expert knowledge of programming and cyberinfrastructure configuration, which is beyond the repertoire of most neuroscience programs. This paper presents early experiences from a one-credit graduate research training course titled ECE 8001 “Software and Cyber Automation in Neuroscience” at the University of Missouri for engendering multi-disciplinary collaborations between computational neuroscience and cyberinfrastructure students and faculty. Specifically, we discuss the course organization and exemplar outcomes involving a next-generation science gateway for training novice users on exemplar neuroscience use cases that involve using tools such as NEURON and MATLAB on local as well as Neuroscience Gateway resources. We also discuss our vision towards a course sequence curriculum for graduate/undergraduate students from biological/psychological sciences and computer science/engineering to jointly build “self- service” training modules using Jupyter Notebook platforms. Thus, our efforts show how we can create scalable and sustainable cyber and software automation for fulfilling a broad set of neuroscience research and education use cases. 
    more » « less
  3. We developed an interdisciplinary course in computational neuroscience to address the need for students trained in both biological/psychological and quantitative sciences. Increasingly, exposure to advanced math and physics is important to stay on the cutting edge of developments and research in neuroscience. Additionally, the ability to work in multidisciplinary teams will continue to be an asset as the field develops. This course brings together students from biology, psychology, biochemistry, engineering, physics, and mathematics. The course was designed to highlight the importance of math in understanding fundamental neuroscience concepts and to prepare students for professional careers in neuroscience. They learn neurobiology, via a ‘biology to model and back again’ approach involving wet- and software/modeling-labs, with the latter being the focus of this paper 
    more » « less
  4. The COVID-19 pandemic has extensively changed the state of psychological science from what research questions psychologists can ask to which methodologies psychologists can use to investigate them. In this article, we offer a perspective on how to optimize new research in the pandemic’s wake. Because this pandemic is inherently a social phenomenon—an event that hinges on human-to-human contact—we focus on socially relevant subfields of psychology. We highlight specific psychological phenomena that have likely shifted as a result of the pandemic and discuss theoretical, methodological, and practical considerations of conducting research on these phenomena. After this discussion, we evaluate metascientific issues that have been amplified by the pandemic. We aim to demonstrate how theoretically grounded views on the COVID-19 pandemic can help make psychological science stronger—not weaker—in its wake. 
    more » « less
  5. Abstract Survey questionnaires are commonly used by psychologists and social scientists to measure various latent traits of study subjects. Various causal inference methods such as the potential outcome framework and structural equation models have been used to infer causal effects. However, the majority of these methods assume the knowledge of true causal structure, which is unknown for many applications in psychological and social sciences. This calls for alternative causal approaches for analyzing such questionnaire data. Bayesian networks are a promising option as they do not require causal structure to be knowna prioribut learn it objectively from data. Although we have seen some recent successes of using Bayesian networks to discover causality for psychological questionnaire data, their techniques tend to suffer from causal non-identifiability with observational data. In this paper, we propose the use of a state-of-the-art Bayesian network that is proven to be fully identifiable for observational ordinal data. We develop a causal structure learning algorithm based on an asymptotically justified BIC score function, a hill-climbing search strategy, and the bootstrapping technique, which is able to not only identify a unique causal structure but also quantify the associated uncertainty. Using simulation studies, we demonstrate the power of the proposed learning algorithm by comparing it with alternative Bayesian network methods. For illustration, we consider a dataset from a psychological study of the functional relationships among the symptoms of obsessive-compulsive disorder and depression. Without any prior knowledge, the proposed algorithm reveals some plausible causal relationships. This paper is accompanied by a user-friendly open-source R package OrdCD on CRAN. 
    more » « less