skip to main content


Search for: All records

Award ID contains: 1735793

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Psychological science can benefit from and contribute to emerging approaches from the computing and information sciences driven by the availability of real-world data and advances in sensing and computing. We focus on one such approach, machine-learned computational models (MLCMs)—computer programs learned from data, typically with human supervision. We introduce MLCMs and discuss how they contrast with traditional computational models and assessment in the psychological sciences. Examples of MLCMs from cognitive and affective science, neuroscience, education, organizational psychology, and personality and social psychology are provided. We consider the accuracy and generalizability of MLCM-based measures, cautioning researchers to consider the underlying context and intended use when interpreting their performance. We conclude that in addition to known data privacy and security concerns, the use of MLCMs entails a reconceptualization of fairness, bias, interpretability, and responsible use.

     
    more » « less
  2. null (Ed.)